6 kV/3.4 mΩ·cm2 Vertical β-Ga2O3 Schottky Barrier Diode With BV2/Ron,sp Performance Exceeding 1-D Unipolar Limit of GaN and SiC

In this work, we show that the \beta -Ga 2 O 3 Schottky Barrier Diode (SBD) can perform beyond the 1-D unipolar limit of the SiC and GaN by employing a deep trench with filled thick SiO 2 layer structure to enhance the breakdown voltage (BV). By doing so, BV and specific on- resistance ( \text{R}_{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2022-05, Vol.43 (5), p.765-768
Hauptverfasser: Dong, Pengfei, Zhang, Jincheng, Yan, Qinglong, Liu, Zhihong, Ma, Peijun, Zhou, Hong, Hao, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 768
container_issue 5
container_start_page 765
container_title IEEE electron device letters
container_volume 43
creator Dong, Pengfei
Zhang, Jincheng
Yan, Qinglong
Liu, Zhihong
Ma, Peijun
Zhou, Hong
Hao, Yue
description In this work, we show that the \beta -Ga 2 O 3 Schottky Barrier Diode (SBD) can perform beyond the 1-D unipolar limit of the SiC and GaN by employing a deep trench with filled thick SiO 2 layer structure to enhance the breakdown voltage (BV). By doing so, BV and specific on- resistance ( \text{R}_{\text {on},\text {sp}} ) of 5-6 kV and 3.4 \text{m}\boldsymbol {\Omega } \cdot \text {cm}^{{2}} are simultaneously derived on the SBDs with \beta -Ga 2 O 3 epi-layer thickness of 10 \boldsymbol {\mu } \text{m} and diode radius of 90 \boldsymbol {\mu }\text{m} . Therefore, the Baliga's power figure of merit (P-FOM = BV ^{{2}} /\text{R}_{\text {on,sp}} ) is yielded to be 7.4-10.6 GW / cm 2 . To the best of all authors' knowledge, those P-FOMs are the highest values among all types of SBDs, which is a significant step towards the Ga 2 O 3 SBD performance improvement. Combined with negligible forward hysteresis and low reverse leakage current, vertical \beta -Ga 2 O 3 SBDs with state-of-the-art BV and P-FOM show its great promise for next generation high voltage and high power applications.
doi_str_mv 10.1109/LED.2022.3160366
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2655855655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9737113</ieee_id><sourcerecordid>2655855655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-d2560e7c65d8b08a1b397f81f3420d6f3236ea50223e4041a54f8d21200f91cd3</originalsourceid><addsrcrecordid>eNotkMtKw0AYhQdRsFb3gpsf3Jp0_rklXdqLVQhWrK3LME0mdtomqZMU7Na3cevGvQ_QZzJQN-dsPs6Bj5BLpD4i7Xai4cBnlDGfo6JcqSPSQilDj0rFj0mLBgI9jlSdkrOqWlKKQgSiRT4VrGYd7gvI91-_P0nOYGZcbRO9hv23N9JszGGSLMq6Xu2gp52zxsHAlqmBV1svoDdjneeyuKk28GRcVrpcF4mB4UdiTGqLN0BvANPCbsq1dhDZ3NZQZjDSj6CLFCa2f05OMr2uzMV_t8n0bvjSv_ei8eihfxt5CYa09lImFTVBomQazmmocc67QRZixgWjqco448po2SjgRlCBWoosTBkySrMuJilvk-vD7saV71tT1fGy3LqiuYyZalRJ2WRDXR0oa4yJN87m2u3ibsADRM7_AGSMaJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655855655</pqid></control><display><type>article</type><title>6 kV/3.4 mΩ·cm2 Vertical β-Ga2O3 Schottky Barrier Diode With BV2/Ron,sp Performance Exceeding 1-D Unipolar Limit of GaN and SiC</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Pengfei ; Zhang, Jincheng ; Yan, Qinglong ; Liu, Zhihong ; Ma, Peijun ; Zhou, Hong ; Hao, Yue</creator><creatorcontrib>Dong, Pengfei ; Zhang, Jincheng ; Yan, Qinglong ; Liu, Zhihong ; Ma, Peijun ; Zhou, Hong ; Hao, Yue</creatorcontrib><description><![CDATA[In this work, we show that the <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 Schottky Barrier Diode (SBD) can perform beyond the 1-D unipolar limit of the SiC and GaN by employing a deep trench with filled thick SiO 2 layer structure to enhance the breakdown voltage (BV). By doing so, BV and specific on- resistance (<inline-formula> <tex-math notation="LaTeX">\text{R}_{\text {on},\text {sp}} </tex-math></inline-formula>) of 5-6 kV and 3.4 <inline-formula> <tex-math notation="LaTeX">\text{m}\boldsymbol {\Omega } \cdot \text {cm}^{{2}} </tex-math></inline-formula> are simultaneously derived on the SBDs with <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 epi-layer thickness of 10 <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\mu } \text{m} </tex-math></inline-formula> and diode radius of 90 <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\mu }\text{m} </tex-math></inline-formula>. Therefore, the Baliga's power figure of merit (P-FOM = BV<inline-formula> <tex-math notation="LaTeX">^{{2}} /\text{R}_{\text {on,sp}} </tex-math></inline-formula>) is yielded to be 7.4-10.6 GW<inline-formula> <tex-math notation="LaTeX">/ </tex-math></inline-formula>cm 2 . To the best of all authors' knowledge, those P-FOMs are the highest values among all types of SBDs, which is a significant step towards the Ga 2 O 3 SBD performance improvement. Combined with negligible forward hysteresis and low reverse leakage current, vertical <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 SBDs with state-of-the-art BV and P-FOM show its great promise for next generation high voltage and high power applications.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2022.3160366</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; breakdown voltage ; Figure of merit ; Gallium nitrides ; Gallium oxides ; Ga₂O ; Hysteresis ; Leakage current ; limit ; power figure of merit ; Schottky barriers ; Schottky diodes ; Semiconductor device measurement ; Silicon carbide ; Silicon dioxide ; SiO ; Substrates ; Thickness</subject><ispartof>IEEE electron device letters, 2022-05, Vol.43 (5), p.765-768</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c180t-d2560e7c65d8b08a1b397f81f3420d6f3236ea50223e4041a54f8d21200f91cd3</citedby><orcidid>0000-0001-7332-6704 ; 0000-0002-7000-4651 ; 0000-0002-3928-5176 ; 0000-0002-0741-7568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9737113$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9737113$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Pengfei</creatorcontrib><creatorcontrib>Zhang, Jincheng</creatorcontrib><creatorcontrib>Yan, Qinglong</creatorcontrib><creatorcontrib>Liu, Zhihong</creatorcontrib><creatorcontrib>Ma, Peijun</creatorcontrib><creatorcontrib>Zhou, Hong</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><title>6 kV/3.4 mΩ·cm2 Vertical β-Ga2O3 Schottky Barrier Diode With BV2/Ron,sp Performance Exceeding 1-D Unipolar Limit of GaN and SiC</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[In this work, we show that the <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 Schottky Barrier Diode (SBD) can perform beyond the 1-D unipolar limit of the SiC and GaN by employing a deep trench with filled thick SiO 2 layer structure to enhance the breakdown voltage (BV). By doing so, BV and specific on- resistance (<inline-formula> <tex-math notation="LaTeX">\text{R}_{\text {on},\text {sp}} </tex-math></inline-formula>) of 5-6 kV and 3.4 <inline-formula> <tex-math notation="LaTeX">\text{m}\boldsymbol {\Omega } \cdot \text {cm}^{{2}} </tex-math></inline-formula> are simultaneously derived on the SBDs with <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 epi-layer thickness of 10 <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\mu } \text{m} </tex-math></inline-formula> and diode radius of 90 <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\mu }\text{m} </tex-math></inline-formula>. Therefore, the Baliga's power figure of merit (P-FOM = BV<inline-formula> <tex-math notation="LaTeX">^{{2}} /\text{R}_{\text {on,sp}} </tex-math></inline-formula>) is yielded to be 7.4-10.6 GW<inline-formula> <tex-math notation="LaTeX">/ </tex-math></inline-formula>cm 2 . To the best of all authors' knowledge, those P-FOMs are the highest values among all types of SBDs, which is a significant step towards the Ga 2 O 3 SBD performance improvement. Combined with negligible forward hysteresis and low reverse leakage current, vertical <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 SBDs with state-of-the-art BV and P-FOM show its great promise for next generation high voltage and high power applications.]]></description><subject>Anodes</subject><subject>breakdown voltage</subject><subject>Figure of merit</subject><subject>Gallium nitrides</subject><subject>Gallium oxides</subject><subject>Ga₂O</subject><subject>Hysteresis</subject><subject>Leakage current</subject><subject>limit</subject><subject>power figure of merit</subject><subject>Schottky barriers</subject><subject>Schottky diodes</subject><subject>Semiconductor device measurement</subject><subject>Silicon carbide</subject><subject>Silicon dioxide</subject><subject>SiO</subject><subject>Substrates</subject><subject>Thickness</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotkMtKw0AYhQdRsFb3gpsf3Jp0_rklXdqLVQhWrK3LME0mdtomqZMU7Na3cevGvQ_QZzJQN-dsPs6Bj5BLpD4i7Xai4cBnlDGfo6JcqSPSQilDj0rFj0mLBgI9jlSdkrOqWlKKQgSiRT4VrGYd7gvI91-_P0nOYGZcbRO9hv23N9JszGGSLMq6Xu2gp52zxsHAlqmBV1svoDdjneeyuKk28GRcVrpcF4mB4UdiTGqLN0BvANPCbsq1dhDZ3NZQZjDSj6CLFCa2f05OMr2uzMV_t8n0bvjSv_ei8eihfxt5CYa09lImFTVBomQazmmocc67QRZixgWjqco448po2SjgRlCBWoosTBkySrMuJilvk-vD7saV71tT1fGy3LqiuYyZalRJ2WRDXR0oa4yJN87m2u3ibsADRM7_AGSMaJ8</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Dong, Pengfei</creator><creator>Zhang, Jincheng</creator><creator>Yan, Qinglong</creator><creator>Liu, Zhihong</creator><creator>Ma, Peijun</creator><creator>Zhou, Hong</creator><creator>Hao, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7332-6704</orcidid><orcidid>https://orcid.org/0000-0002-7000-4651</orcidid><orcidid>https://orcid.org/0000-0002-3928-5176</orcidid><orcidid>https://orcid.org/0000-0002-0741-7568</orcidid></search><sort><creationdate>20220501</creationdate><title>6 kV/3.4 mΩ·cm2 Vertical β-Ga2O3 Schottky Barrier Diode With BV2/Ron,sp Performance Exceeding 1-D Unipolar Limit of GaN and SiC</title><author>Dong, Pengfei ; Zhang, Jincheng ; Yan, Qinglong ; Liu, Zhihong ; Ma, Peijun ; Zhou, Hong ; Hao, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-d2560e7c65d8b08a1b397f81f3420d6f3236ea50223e4041a54f8d21200f91cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>breakdown voltage</topic><topic>Figure of merit</topic><topic>Gallium nitrides</topic><topic>Gallium oxides</topic><topic>Ga₂O</topic><topic>Hysteresis</topic><topic>Leakage current</topic><topic>limit</topic><topic>power figure of merit</topic><topic>Schottky barriers</topic><topic>Schottky diodes</topic><topic>Semiconductor device measurement</topic><topic>Silicon carbide</topic><topic>Silicon dioxide</topic><topic>SiO</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Pengfei</creatorcontrib><creatorcontrib>Zhang, Jincheng</creatorcontrib><creatorcontrib>Yan, Qinglong</creatorcontrib><creatorcontrib>Liu, Zhihong</creatorcontrib><creatorcontrib>Ma, Peijun</creatorcontrib><creatorcontrib>Zhou, Hong</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Pengfei</au><au>Zhang, Jincheng</au><au>Yan, Qinglong</au><au>Liu, Zhihong</au><au>Ma, Peijun</au><au>Zhou, Hong</au><au>Hao, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>6 kV/3.4 mΩ·cm2 Vertical β-Ga2O3 Schottky Barrier Diode With BV2/Ron,sp Performance Exceeding 1-D Unipolar Limit of GaN and SiC</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>43</volume><issue>5</issue><spage>765</spage><epage>768</epage><pages>765-768</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[In this work, we show that the <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 Schottky Barrier Diode (SBD) can perform beyond the 1-D unipolar limit of the SiC and GaN by employing a deep trench with filled thick SiO 2 layer structure to enhance the breakdown voltage (BV). By doing so, BV and specific on- resistance (<inline-formula> <tex-math notation="LaTeX">\text{R}_{\text {on},\text {sp}} </tex-math></inline-formula>) of 5-6 kV and 3.4 <inline-formula> <tex-math notation="LaTeX">\text{m}\boldsymbol {\Omega } \cdot \text {cm}^{{2}} </tex-math></inline-formula> are simultaneously derived on the SBDs with <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 epi-layer thickness of 10 <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\mu } \text{m} </tex-math></inline-formula> and diode radius of 90 <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\mu }\text{m} </tex-math></inline-formula>. Therefore, the Baliga's power figure of merit (P-FOM = BV<inline-formula> <tex-math notation="LaTeX">^{{2}} /\text{R}_{\text {on,sp}} </tex-math></inline-formula>) is yielded to be 7.4-10.6 GW<inline-formula> <tex-math notation="LaTeX">/ </tex-math></inline-formula>cm 2 . To the best of all authors' knowledge, those P-FOMs are the highest values among all types of SBDs, which is a significant step towards the Ga 2 O 3 SBD performance improvement. Combined with negligible forward hysteresis and low reverse leakage current, vertical <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 SBDs with state-of-the-art BV and P-FOM show its great promise for next generation high voltage and high power applications.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2022.3160366</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7332-6704</orcidid><orcidid>https://orcid.org/0000-0002-7000-4651</orcidid><orcidid>https://orcid.org/0000-0002-3928-5176</orcidid><orcidid>https://orcid.org/0000-0002-0741-7568</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2022-05, Vol.43 (5), p.765-768
issn 0741-3106
1558-0563
language eng
recordid cdi_proquest_journals_2655855655
source IEEE Electronic Library (IEL)
subjects Anodes
breakdown voltage
Figure of merit
Gallium nitrides
Gallium oxides
Ga₂O
Hysteresis
Leakage current
limit
power figure of merit
Schottky barriers
Schottky diodes
Semiconductor device measurement
Silicon carbide
Silicon dioxide
SiO
Substrates
Thickness
title 6 kV/3.4 mΩ·cm2 Vertical β-Ga2O3 Schottky Barrier Diode With BV2/Ron,sp Performance Exceeding 1-D Unipolar Limit of GaN and SiC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=6%20kV/3.4%20m%CE%A9%C2%B7cm2%20Vertical%20%CE%B2-Ga2O3%20Schottky%20Barrier%20Diode%20With%20BV2/Ron,sp%20Performance%20Exceeding%201-D%20Unipolar%20Limit%20of%20GaN%20and%20SiC&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Dong,%20Pengfei&rft.date=2022-05-01&rft.volume=43&rft.issue=5&rft.spage=765&rft.epage=768&rft.pages=765-768&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2022.3160366&rft_dat=%3Cproquest_RIE%3E2655855655%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655855655&rft_id=info:pmid/&rft_ieee_id=9737113&rfr_iscdi=true