Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation

Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Kendrick, Connah, Cassidy, Bill, Pappachan, Joseph M, O'Shea, Claire, Fernandez, Cornelious J, Chacko, Elias, Koshy, Jacob, Reeves, Neil D, Yap, Moi Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kendrick, Connah
Cassidy, Bill
Pappachan, Joseph M
O'Shea, Claire
Fernandez, Cornelious J
Chacko, Elias
Koshy, Jacob
Reeves, Neil D
Yap, Moi Hoon
description Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest segmentation dataset where ulcer regions were manually delineated by clinicians. We assess whether the clinical delineations are machine interpretable by deep learning networks or if image processing refined contour should be used. By providing benchmark results using a selection of popular deep learning algorithms, we draw new insights into the limitations of DFU wound delineation and report on the associated issues. This paper provides some observations on baseline models to facilitate DFUC2022 Challenge in conjunction with MICCAI 2022. The leaderboard will be ranked by Dice score, where the best FCN-based method is 0.5708 and DeepLabv3+ achieved the best score of 0.6277. This paper demonstrates that image processing using refined contour as ground truth can provide better agreement with machine predicted results. DFUC2022 will be released on the 27th April 2022.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2655321884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655321884</sourcerecordid><originalsourceid>FETCH-proquest_journals_26553218843</originalsourceid><addsrcrecordid>eNqNjkEOgjAURBsTE4lyh5-4JsEWkD1IdOFKXGNpPlhSW2zL_W2MB3A1k5k3yaxIRBk7JGVG6YbEzk1pmtLiSPOcReTRWq6d4l7qESoltRRcQY3BYQiNBjNALXmPXgpojPFwVwKtA6m9gSsXz0DCRXu0s0XPe4Vww_GF2n_3O7IeuHIY_3RL9s2prc7JbM17Qee7ySxWh6qjRbhED2WZsf-oDwcRRS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655321884</pqid></control><display><type>article</type><title>Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation</title><source>Freely Accessible Journals</source><creator>Kendrick, Connah ; Cassidy, Bill ; Pappachan, Joseph M ; O'Shea, Claire ; Fernandez, Cornelious J ; Chacko, Elias ; Koshy, Jacob ; Reeves, Neil D ; Yap, Moi Hoon</creator><creatorcontrib>Kendrick, Connah ; Cassidy, Bill ; Pappachan, Joseph M ; O'Shea, Claire ; Fernandez, Cornelious J ; Chacko, Elias ; Koshy, Jacob ; Reeves, Neil D ; Yap, Moi Hoon</creatorcontrib><description>Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest segmentation dataset where ulcer regions were manually delineated by clinicians. We assess whether the clinical delineations are machine interpretable by deep learning networks or if image processing refined contour should be used. By providing benchmark results using a selection of popular deep learning algorithms, we draw new insights into the limitations of DFU wound delineation and report on the associated issues. This paper provides some observations on baseline models to facilitate DFUC2022 Challenge in conjunction with MICCAI 2022. The leaderboard will be ranked by Dice score, where the best FCN-based method is 0.5708 and DeepLabv3+ achieved the best score of 0.6277. This paper demonstrates that image processing using refined contour as ground truth can provide better agreement with machine predicted results. DFUC2022 will be released on the 27th April 2022.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Contours ; Datasets ; Deep learning ; Delineation ; Diabetes ; Foot diseases ; Image processing ; Image segmentation ; Leg ulcers ; Machine learning ; Machinery condition monitoring ; Ulcers</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kendrick, Connah</creatorcontrib><creatorcontrib>Cassidy, Bill</creatorcontrib><creatorcontrib>Pappachan, Joseph M</creatorcontrib><creatorcontrib>O'Shea, Claire</creatorcontrib><creatorcontrib>Fernandez, Cornelious J</creatorcontrib><creatorcontrib>Chacko, Elias</creatorcontrib><creatorcontrib>Koshy, Jacob</creatorcontrib><creatorcontrib>Reeves, Neil D</creatorcontrib><creatorcontrib>Yap, Moi Hoon</creatorcontrib><title>Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation</title><title>arXiv.org</title><description>Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest segmentation dataset where ulcer regions were manually delineated by clinicians. We assess whether the clinical delineations are machine interpretable by deep learning networks or if image processing refined contour should be used. By providing benchmark results using a selection of popular deep learning algorithms, we draw new insights into the limitations of DFU wound delineation and report on the associated issues. This paper provides some observations on baseline models to facilitate DFUC2022 Challenge in conjunction with MICCAI 2022. The leaderboard will be ranked by Dice score, where the best FCN-based method is 0.5708 and DeepLabv3+ achieved the best score of 0.6277. This paper demonstrates that image processing using refined contour as ground truth can provide better agreement with machine predicted results. DFUC2022 will be released on the 27th April 2022.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Contours</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Delineation</subject><subject>Diabetes</subject><subject>Foot diseases</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Leg ulcers</subject><subject>Machine learning</subject><subject>Machinery condition monitoring</subject><subject>Ulcers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkEOgjAURBsTE4lyh5-4JsEWkD1IdOFKXGNpPlhSW2zL_W2MB3A1k5k3yaxIRBk7JGVG6YbEzk1pmtLiSPOcReTRWq6d4l7qESoltRRcQY3BYQiNBjNALXmPXgpojPFwVwKtA6m9gSsXz0DCRXu0s0XPe4Vww_GF2n_3O7IeuHIY_3RL9s2prc7JbM17Qee7ySxWh6qjRbhED2WZsf-oDwcRRS0</recordid><startdate>20221003</startdate><enddate>20221003</enddate><creator>Kendrick, Connah</creator><creator>Cassidy, Bill</creator><creator>Pappachan, Joseph M</creator><creator>O'Shea, Claire</creator><creator>Fernandez, Cornelious J</creator><creator>Chacko, Elias</creator><creator>Koshy, Jacob</creator><creator>Reeves, Neil D</creator><creator>Yap, Moi Hoon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221003</creationdate><title>Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation</title><author>Kendrick, Connah ; Cassidy, Bill ; Pappachan, Joseph M ; O'Shea, Claire ; Fernandez, Cornelious J ; Chacko, Elias ; Koshy, Jacob ; Reeves, Neil D ; Yap, Moi Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26553218843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Contours</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Delineation</topic><topic>Diabetes</topic><topic>Foot diseases</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Leg ulcers</topic><topic>Machine learning</topic><topic>Machinery condition monitoring</topic><topic>Ulcers</topic><toplevel>online_resources</toplevel><creatorcontrib>Kendrick, Connah</creatorcontrib><creatorcontrib>Cassidy, Bill</creatorcontrib><creatorcontrib>Pappachan, Joseph M</creatorcontrib><creatorcontrib>O'Shea, Claire</creatorcontrib><creatorcontrib>Fernandez, Cornelious J</creatorcontrib><creatorcontrib>Chacko, Elias</creatorcontrib><creatorcontrib>Koshy, Jacob</creatorcontrib><creatorcontrib>Reeves, Neil D</creatorcontrib><creatorcontrib>Yap, Moi Hoon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendrick, Connah</au><au>Cassidy, Bill</au><au>Pappachan, Joseph M</au><au>O'Shea, Claire</au><au>Fernandez, Cornelious J</au><au>Chacko, Elias</au><au>Koshy, Jacob</au><au>Reeves, Neil D</au><au>Yap, Moi Hoon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2022-10-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest segmentation dataset where ulcer regions were manually delineated by clinicians. We assess whether the clinical delineations are machine interpretable by deep learning networks or if image processing refined contour should be used. By providing benchmark results using a selection of popular deep learning algorithms, we draw new insights into the limitations of DFU wound delineation and report on the associated issues. This paper provides some observations on baseline models to facilitate DFUC2022 Challenge in conjunction with MICCAI 2022. The leaderboard will be ranked by Dice score, where the best FCN-based method is 0.5708 and DeepLabv3+ achieved the best score of 0.6277. This paper demonstrates that image processing using refined contour as ground truth can provide better agreement with machine predicted results. DFUC2022 will be released on the 27th April 2022.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2655321884
source Freely Accessible Journals
subjects Algorithms
Annotations
Contours
Datasets
Deep learning
Delineation
Diabetes
Foot diseases
Image processing
Image segmentation
Leg ulcers
Machine learning
Machinery condition monitoring
Ulcers
title Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Translating%20Clinical%20Delineation%20of%20Diabetic%20Foot%20Ulcers%20into%20Machine%20Interpretable%20Segmentation&rft.jtitle=arXiv.org&rft.au=Kendrick,%20Connah&rft.date=2022-10-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2655321884%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655321884&rft_id=info:pmid/&rfr_iscdi=true