Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation
Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kendrick, Connah Cassidy, Bill Pappachan, Joseph M O'Shea, Claire Fernandez, Cornelious J Chacko, Elias Koshy, Jacob Reeves, Neil D Yap, Moi Hoon |
description | Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest segmentation dataset where ulcer regions were manually delineated by clinicians. We assess whether the clinical delineations are machine interpretable by deep learning networks or if image processing refined contour should be used. By providing benchmark results using a selection of popular deep learning algorithms, we draw new insights into the limitations of DFU wound delineation and report on the associated issues. This paper provides some observations on baseline models to facilitate DFUC2022 Challenge in conjunction with MICCAI 2022. The leaderboard will be ranked by Dice score, where the best FCN-based method is 0.5708 and DeepLabv3+ achieved the best score of 0.6277. This paper demonstrates that image processing using refined contour as ground truth can provide better agreement with machine predicted results. DFUC2022 will be released on the 27th April 2022. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2655321884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655321884</sourcerecordid><originalsourceid>FETCH-proquest_journals_26553218843</originalsourceid><addsrcrecordid>eNqNjkEOgjAURBsTE4lyh5-4JsEWkD1IdOFKXGNpPlhSW2zL_W2MB3A1k5k3yaxIRBk7JGVG6YbEzk1pmtLiSPOcReTRWq6d4l7qESoltRRcQY3BYQiNBjNALXmPXgpojPFwVwKtA6m9gSsXz0DCRXu0s0XPe4Vww_GF2n_3O7IeuHIY_3RL9s2prc7JbM17Qee7ySxWh6qjRbhED2WZsf-oDwcRRS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655321884</pqid></control><display><type>article</type><title>Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation</title><source>Freely Accessible Journals</source><creator>Kendrick, Connah ; Cassidy, Bill ; Pappachan, Joseph M ; O'Shea, Claire ; Fernandez, Cornelious J ; Chacko, Elias ; Koshy, Jacob ; Reeves, Neil D ; Yap, Moi Hoon</creator><creatorcontrib>Kendrick, Connah ; Cassidy, Bill ; Pappachan, Joseph M ; O'Shea, Claire ; Fernandez, Cornelious J ; Chacko, Elias ; Koshy, Jacob ; Reeves, Neil D ; Yap, Moi Hoon</creatorcontrib><description>Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest segmentation dataset where ulcer regions were manually delineated by clinicians. We assess whether the clinical delineations are machine interpretable by deep learning networks or if image processing refined contour should be used. By providing benchmark results using a selection of popular deep learning algorithms, we draw new insights into the limitations of DFU wound delineation and report on the associated issues. This paper provides some observations on baseline models to facilitate DFUC2022 Challenge in conjunction with MICCAI 2022. The leaderboard will be ranked by Dice score, where the best FCN-based method is 0.5708 and DeepLabv3+ achieved the best score of 0.6277. This paper demonstrates that image processing using refined contour as ground truth can provide better agreement with machine predicted results. DFUC2022 will be released on the 27th April 2022.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Contours ; Datasets ; Deep learning ; Delineation ; Diabetes ; Foot diseases ; Image processing ; Image segmentation ; Leg ulcers ; Machine learning ; Machinery condition monitoring ; Ulcers</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kendrick, Connah</creatorcontrib><creatorcontrib>Cassidy, Bill</creatorcontrib><creatorcontrib>Pappachan, Joseph M</creatorcontrib><creatorcontrib>O'Shea, Claire</creatorcontrib><creatorcontrib>Fernandez, Cornelious J</creatorcontrib><creatorcontrib>Chacko, Elias</creatorcontrib><creatorcontrib>Koshy, Jacob</creatorcontrib><creatorcontrib>Reeves, Neil D</creatorcontrib><creatorcontrib>Yap, Moi Hoon</creatorcontrib><title>Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation</title><title>arXiv.org</title><description>Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest segmentation dataset where ulcer regions were manually delineated by clinicians. We assess whether the clinical delineations are machine interpretable by deep learning networks or if image processing refined contour should be used. By providing benchmark results using a selection of popular deep learning algorithms, we draw new insights into the limitations of DFU wound delineation and report on the associated issues. This paper provides some observations on baseline models to facilitate DFUC2022 Challenge in conjunction with MICCAI 2022. The leaderboard will be ranked by Dice score, where the best FCN-based method is 0.5708 and DeepLabv3+ achieved the best score of 0.6277. This paper demonstrates that image processing using refined contour as ground truth can provide better agreement with machine predicted results. DFUC2022 will be released on the 27th April 2022.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Contours</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Delineation</subject><subject>Diabetes</subject><subject>Foot diseases</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Leg ulcers</subject><subject>Machine learning</subject><subject>Machinery condition monitoring</subject><subject>Ulcers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkEOgjAURBsTE4lyh5-4JsEWkD1IdOFKXGNpPlhSW2zL_W2MB3A1k5k3yaxIRBk7JGVG6YbEzk1pmtLiSPOcReTRWq6d4l7qESoltRRcQY3BYQiNBjNALXmPXgpojPFwVwKtA6m9gSsXz0DCRXu0s0XPe4Vww_GF2n_3O7IeuHIY_3RL9s2prc7JbM17Qee7ySxWh6qjRbhED2WZsf-oDwcRRS0</recordid><startdate>20221003</startdate><enddate>20221003</enddate><creator>Kendrick, Connah</creator><creator>Cassidy, Bill</creator><creator>Pappachan, Joseph M</creator><creator>O'Shea, Claire</creator><creator>Fernandez, Cornelious J</creator><creator>Chacko, Elias</creator><creator>Koshy, Jacob</creator><creator>Reeves, Neil D</creator><creator>Yap, Moi Hoon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221003</creationdate><title>Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation</title><author>Kendrick, Connah ; Cassidy, Bill ; Pappachan, Joseph M ; O'Shea, Claire ; Fernandez, Cornelious J ; Chacko, Elias ; Koshy, Jacob ; Reeves, Neil D ; Yap, Moi Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26553218843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Contours</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Delineation</topic><topic>Diabetes</topic><topic>Foot diseases</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Leg ulcers</topic><topic>Machine learning</topic><topic>Machinery condition monitoring</topic><topic>Ulcers</topic><toplevel>online_resources</toplevel><creatorcontrib>Kendrick, Connah</creatorcontrib><creatorcontrib>Cassidy, Bill</creatorcontrib><creatorcontrib>Pappachan, Joseph M</creatorcontrib><creatorcontrib>O'Shea, Claire</creatorcontrib><creatorcontrib>Fernandez, Cornelious J</creatorcontrib><creatorcontrib>Chacko, Elias</creatorcontrib><creatorcontrib>Koshy, Jacob</creatorcontrib><creatorcontrib>Reeves, Neil D</creatorcontrib><creatorcontrib>Yap, Moi Hoon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendrick, Connah</au><au>Cassidy, Bill</au><au>Pappachan, Joseph M</au><au>O'Shea, Claire</au><au>Fernandez, Cornelious J</au><au>Chacko, Elias</au><au>Koshy, Jacob</au><au>Reeves, Neil D</au><au>Yap, Moi Hoon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2022-10-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest segmentation dataset where ulcer regions were manually delineated by clinicians. We assess whether the clinical delineations are machine interpretable by deep learning networks or if image processing refined contour should be used. By providing benchmark results using a selection of popular deep learning algorithms, we draw new insights into the limitations of DFU wound delineation and report on the associated issues. This paper provides some observations on baseline models to facilitate DFUC2022 Challenge in conjunction with MICCAI 2022. The leaderboard will be ranked by Dice score, where the best FCN-based method is 0.5708 and DeepLabv3+ achieved the best score of 0.6277. This paper demonstrates that image processing using refined contour as ground truth can provide better agreement with machine predicted results. DFUC2022 will be released on the 27th April 2022.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2655321884 |
source | Freely Accessible Journals |
subjects | Algorithms Annotations Contours Datasets Deep learning Delineation Diabetes Foot diseases Image processing Image segmentation Leg ulcers Machine learning Machinery condition monitoring Ulcers |
title | Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Translating%20Clinical%20Delineation%20of%20Diabetic%20Foot%20Ulcers%20into%20Machine%20Interpretable%20Segmentation&rft.jtitle=arXiv.org&rft.au=Kendrick,%20Connah&rft.date=2022-10-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2655321884%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655321884&rft_id=info:pmid/&rfr_iscdi=true |