Applying Reinforcement Learning towards automating energy efficient virtual machine consolidation in cloud data centers

Energy awareness presents an immense challenge for cloud computing infrastructure and the development of next generation data centers. Virtual Machine (VM) consolidation is one technique that can be harnessed to reduce energy related costs and environmental sustainability issues of data centers. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems (Oxford) 2022-07, Vol.107, p.101722, Article 101722
Hauptverfasser: Shaw, Rachael, Howley, Enda, Barrett, Enda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101722
container_title Information systems (Oxford)
container_volume 107
creator Shaw, Rachael
Howley, Enda
Barrett, Enda
description Energy awareness presents an immense challenge for cloud computing infrastructure and the development of next generation data centers. Virtual Machine (VM) consolidation is one technique that can be harnessed to reduce energy related costs and environmental sustainability issues of data centers. In recent times intelligent learning approaches have proven to be effective for managing resources in cloud data centers. In this paper we explore the application of Reinforcement Learning (RL) algorithms for the VM consolidation problem demonstrating their capacity to optimize the distribution of virtual machines across the data center for improved resource management. Determining efficient policies in dynamic environments can be a difficult task, however, the proposed RL approach learns optimal behavior in the absence of complete knowledge due to its innate ability to reason under uncertainty. Using real workload data we provide a comparative analysis of popular RL algorithms including SARSA and Q-learning. Our empirical results demonstrate how our approach improves energy efficiency by 25% while also reducing service violations by 63% over the popular Power-Aware heuristic algorithm. •RL VM consolidation model capable of optimizing the distribution of VMs.•Comparative study to evaluating RL learning algorithms and mechanisms.•Energy efficient and performance driven RL consolidation approach.•Applying reward shaping for improved guidance during the learning process.
doi_str_mv 10.1016/j.is.2021.101722
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655167156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030643792100003X</els_id><sourcerecordid>2655167156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8e271fd679e960964b70296921b7e09bcd823c6a7823fbed0a14b23c157521ea3</originalsourceid><addsrcrecordid>eNp1kEtrwzAQhEVpoenj3qOgZ6eSHEtRbyH0BYFCac9CltepjC25kp2Qf18Z99rTMsN8u8sgdEfJkhLKH5qljUtGGJ2kYOwMLeha5Bkngp-jBckJz1a5kJfoKsaGEMIKKRfouOn79mTdHn-AdbUPBjpwA96BDm6yB3_UoYpYj4Pv9DBZ4CDsTxjq2ho7hQ82DKNucafNt3WAjXfRt7ZKce-wddi0fqxw0hqbBECIN-ii1m2E2795jb6enz63r9nu_eVtu9llJmdsyNbABK0rLiRITiRflYIwySWjpQAiS1OtWW64FmnUJVRE01WZHFqIglHQ-TW6n_f2wf-MEAfV-DG4dFIxXhSUC1rwlCJzygQfY4Ba9cF2OpwUJWqqVzXKJiLVq-Z6E_I4I5C-P1gIKk5lGKhsADOoytv_4V_XAoOh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655167156</pqid></control><display><type>article</type><title>Applying Reinforcement Learning towards automating energy efficient virtual machine consolidation in cloud data centers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shaw, Rachael ; Howley, Enda ; Barrett, Enda</creator><creatorcontrib>Shaw, Rachael ; Howley, Enda ; Barrett, Enda</creatorcontrib><description>Energy awareness presents an immense challenge for cloud computing infrastructure and the development of next generation data centers. Virtual Machine (VM) consolidation is one technique that can be harnessed to reduce energy related costs and environmental sustainability issues of data centers. In recent times intelligent learning approaches have proven to be effective for managing resources in cloud data centers. In this paper we explore the application of Reinforcement Learning (RL) algorithms for the VM consolidation problem demonstrating their capacity to optimize the distribution of virtual machines across the data center for improved resource management. Determining efficient policies in dynamic environments can be a difficult task, however, the proposed RL approach learns optimal behavior in the absence of complete knowledge due to its innate ability to reason under uncertainty. Using real workload data we provide a comparative analysis of popular RL algorithms including SARSA and Q-learning. Our empirical results demonstrate how our approach improves energy efficiency by 25% while also reducing service violations by 63% over the popular Power-Aware heuristic algorithm. •RL VM consolidation model capable of optimizing the distribution of VMs.•Comparative study to evaluating RL learning algorithms and mechanisms.•Energy efficient and performance driven RL consolidation approach.•Applying reward shaping for improved guidance during the learning process.</description><identifier>ISSN: 0306-4379</identifier><identifier>EISSN: 1873-6076</identifier><identifier>DOI: 10.1016/j.is.2021.101722</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Artificial intelligence ; Cloud computing ; Computer centers ; Consolidation ; Data centers ; Empirical analysis ; Energy costs ; Energy efficiency ; Heuristic methods ; Information systems ; Machine learning ; Optimization ; Reinforcement learning ; Resource management ; Virtual environments ; Virtual machine consolidation</subject><ispartof>Information systems (Oxford), 2022-07, Vol.107, p.101722, Article 101722</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-8e271fd679e960964b70296921b7e09bcd823c6a7823fbed0a14b23c157521ea3</citedby><cites>FETCH-LOGICAL-c322t-8e271fd679e960964b70296921b7e09bcd823c6a7823fbed0a14b23c157521ea3</cites><orcidid>0000-0002-2826-0088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030643792100003X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Shaw, Rachael</creatorcontrib><creatorcontrib>Howley, Enda</creatorcontrib><creatorcontrib>Barrett, Enda</creatorcontrib><title>Applying Reinforcement Learning towards automating energy efficient virtual machine consolidation in cloud data centers</title><title>Information systems (Oxford)</title><description>Energy awareness presents an immense challenge for cloud computing infrastructure and the development of next generation data centers. Virtual Machine (VM) consolidation is one technique that can be harnessed to reduce energy related costs and environmental sustainability issues of data centers. In recent times intelligent learning approaches have proven to be effective for managing resources in cloud data centers. In this paper we explore the application of Reinforcement Learning (RL) algorithms for the VM consolidation problem demonstrating their capacity to optimize the distribution of virtual machines across the data center for improved resource management. Determining efficient policies in dynamic environments can be a difficult task, however, the proposed RL approach learns optimal behavior in the absence of complete knowledge due to its innate ability to reason under uncertainty. Using real workload data we provide a comparative analysis of popular RL algorithms including SARSA and Q-learning. Our empirical results demonstrate how our approach improves energy efficiency by 25% while also reducing service violations by 63% over the popular Power-Aware heuristic algorithm. •RL VM consolidation model capable of optimizing the distribution of VMs.•Comparative study to evaluating RL learning algorithms and mechanisms.•Energy efficient and performance driven RL consolidation approach.•Applying reward shaping for improved guidance during the learning process.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cloud computing</subject><subject>Computer centers</subject><subject>Consolidation</subject><subject>Data centers</subject><subject>Empirical analysis</subject><subject>Energy costs</subject><subject>Energy efficiency</subject><subject>Heuristic methods</subject><subject>Information systems</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Reinforcement learning</subject><subject>Resource management</subject><subject>Virtual environments</subject><subject>Virtual machine consolidation</subject><issn>0306-4379</issn><issn>1873-6076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtrwzAQhEVpoenj3qOgZ6eSHEtRbyH0BYFCac9CltepjC25kp2Qf18Z99rTMsN8u8sgdEfJkhLKH5qljUtGGJ2kYOwMLeha5Bkngp-jBckJz1a5kJfoKsaGEMIKKRfouOn79mTdHn-AdbUPBjpwA96BDm6yB3_UoYpYj4Pv9DBZ4CDsTxjq2ho7hQ82DKNucafNt3WAjXfRt7ZKce-wddi0fqxw0hqbBECIN-ii1m2E2795jb6enz63r9nu_eVtu9llJmdsyNbABK0rLiRITiRflYIwySWjpQAiS1OtWW64FmnUJVRE01WZHFqIglHQ-TW6n_f2wf-MEAfV-DG4dFIxXhSUC1rwlCJzygQfY4Ba9cF2OpwUJWqqVzXKJiLVq-Z6E_I4I5C-P1gIKk5lGKhsADOoytv_4V_XAoOh</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Shaw, Rachael</creator><creator>Howley, Enda</creator><creator>Barrett, Enda</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2826-0088</orcidid></search><sort><creationdate>202207</creationdate><title>Applying Reinforcement Learning towards automating energy efficient virtual machine consolidation in cloud data centers</title><author>Shaw, Rachael ; Howley, Enda ; Barrett, Enda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8e271fd679e960964b70296921b7e09bcd823c6a7823fbed0a14b23c157521ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cloud computing</topic><topic>Computer centers</topic><topic>Consolidation</topic><topic>Data centers</topic><topic>Empirical analysis</topic><topic>Energy costs</topic><topic>Energy efficiency</topic><topic>Heuristic methods</topic><topic>Information systems</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Reinforcement learning</topic><topic>Resource management</topic><topic>Virtual environments</topic><topic>Virtual machine consolidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, Rachael</creatorcontrib><creatorcontrib>Howley, Enda</creatorcontrib><creatorcontrib>Barrett, Enda</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information systems (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, Rachael</au><au>Howley, Enda</au><au>Barrett, Enda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Reinforcement Learning towards automating energy efficient virtual machine consolidation in cloud data centers</atitle><jtitle>Information systems (Oxford)</jtitle><date>2022-07</date><risdate>2022</risdate><volume>107</volume><spage>101722</spage><pages>101722-</pages><artnum>101722</artnum><issn>0306-4379</issn><eissn>1873-6076</eissn><abstract>Energy awareness presents an immense challenge for cloud computing infrastructure and the development of next generation data centers. Virtual Machine (VM) consolidation is one technique that can be harnessed to reduce energy related costs and environmental sustainability issues of data centers. In recent times intelligent learning approaches have proven to be effective for managing resources in cloud data centers. In this paper we explore the application of Reinforcement Learning (RL) algorithms for the VM consolidation problem demonstrating their capacity to optimize the distribution of virtual machines across the data center for improved resource management. Determining efficient policies in dynamic environments can be a difficult task, however, the proposed RL approach learns optimal behavior in the absence of complete knowledge due to its innate ability to reason under uncertainty. Using real workload data we provide a comparative analysis of popular RL algorithms including SARSA and Q-learning. Our empirical results demonstrate how our approach improves energy efficiency by 25% while also reducing service violations by 63% over the popular Power-Aware heuristic algorithm. •RL VM consolidation model capable of optimizing the distribution of VMs.•Comparative study to evaluating RL learning algorithms and mechanisms.•Energy efficient and performance driven RL consolidation approach.•Applying reward shaping for improved guidance during the learning process.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.is.2021.101722</doi><orcidid>https://orcid.org/0000-0002-2826-0088</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-4379
ispartof Information systems (Oxford), 2022-07, Vol.107, p.101722, Article 101722
issn 0306-4379
1873-6076
language eng
recordid cdi_proquest_journals_2655167156
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Artificial intelligence
Cloud computing
Computer centers
Consolidation
Data centers
Empirical analysis
Energy costs
Energy efficiency
Heuristic methods
Information systems
Machine learning
Optimization
Reinforcement learning
Resource management
Virtual environments
Virtual machine consolidation
title Applying Reinforcement Learning towards automating energy efficient virtual machine consolidation in cloud data centers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Reinforcement%20Learning%20towards%20automating%20energy%20efficient%20virtual%20machine%20consolidation%20in%20cloud%20data%20centers&rft.jtitle=Information%20systems%20(Oxford)&rft.au=Shaw,%20Rachael&rft.date=2022-07&rft.volume=107&rft.spage=101722&rft.pages=101722-&rft.artnum=101722&rft.issn=0306-4379&rft.eissn=1873-6076&rft_id=info:doi/10.1016/j.is.2021.101722&rft_dat=%3Cproquest_cross%3E2655167156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655167156&rft_id=info:pmid/&rft_els_id=S030643792100003X&rfr_iscdi=true