A Framework for Adversarially Robust Streaming Algorithms
We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online mann...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 2022-04, Vol.69 (2), p.1-33, Article 17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Journal of the ACM |
container_volume | 69 |
creator | Ben-Eliezer, Omri Jayaram, Rajesh Woodruff, David P. Yogev, Eylon |
description | We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. In this work, we show that the answer is positive for various important streaming problems in the insertion-only model, including distinct elements and more generally Fp-estimation, Fp-heavy hitters, entropy estimation, and others. For all of these problems, we develop adversarially robust (1+ε)-approximation algorithms whose required space matches that of the best known non-robust algorithms up to a poly(log n, 1/ε) multiplicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various scenarios. |
doi_str_mv | 10.1145/3498334 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655165388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655165388</sourcerecordid><originalsourceid>FETCH-LOGICAL-a305t-8e2f49632e13d169631cb11cb3a7821f5a7f9a6ec1b0c109a6e3c673ffe949263</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRMFbx7ingwVN0J_uVHEOxKhQEP8Bb2Gx3a2rSrbNJpf-9KakehveG-TEPHiGXQG8BuLhjPM8Y40ckAiFUopj4OCYRpZQnggOckrMQVsNKU6oikhfxDHVrfzx-xc5jXCy2FoPGWjfNLn7xVR-6-LVDq9t6vYyLZumx7j7bcE5OnG6CvTjohLzP7t-mj8n8-eFpWswTzajoksymjueSpRbYAuTgwFQwDNMqS8EJrVyupTVQUQN0b5mRijlnc56nkk3I9fh3g_67t6ErV77H9RBZplIIkIJl2UDdjJRBHwJaV26wbjXuSqDlvpfy0MtAXo2kNu0_9Hf8BRfJW2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655165388</pqid></control><display><type>article</type><title>A Framework for Adversarially Robust Streaming Algorithms</title><source>ACM Digital Library</source><creator>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</creator><creatorcontrib>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</creatorcontrib><description>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. In this work, we show that the answer is positive for various important streaming problems in the insertion-only model, including distinct elements and more generally Fp-estimation, Fp-heavy hitters, entropy estimation, and others. For all of these problems, we develop adversarially robust (1+ε)-approximation algorithms whose required space matches that of the best known non-robust algorithms up to a poly(log n, 1/ε) multiplicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various scenarios.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/3498334</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Adversary models ; Algorithms ; Robustness ; Streaming models ; Streaming, sublinear and near linear time algorithms ; Theory of computation</subject><ispartof>Journal of the ACM, 2022-04, Vol.69 (2), p.1-33, Article 17</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><rights>Copyright Association for Computing Machinery Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a305t-8e2f49632e13d169631cb11cb3a7821f5a7f9a6ec1b0c109a6e3c673ffe949263</citedby><cites>FETCH-LOGICAL-a305t-8e2f49632e13d169631cb11cb3a7821f5a7f9a6ec1b0c109a6e3c673ffe949263</cites><orcidid>0000-0003-0332-6332 ; 0000-0001-8599-2472 ; 0000-0001-6366-5964 ; 0000-0002-2158-1380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3498334$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Ben-Eliezer, Omri</creatorcontrib><creatorcontrib>Jayaram, Rajesh</creatorcontrib><creatorcontrib>Woodruff, David P.</creatorcontrib><creatorcontrib>Yogev, Eylon</creatorcontrib><title>A Framework for Adversarially Robust Streaming Algorithms</title><title>Journal of the ACM</title><addtitle>ACM JACM</addtitle><description>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. In this work, we show that the answer is positive for various important streaming problems in the insertion-only model, including distinct elements and more generally Fp-estimation, Fp-heavy hitters, entropy estimation, and others. For all of these problems, we develop adversarially robust (1+ε)-approximation algorithms whose required space matches that of the best known non-robust algorithms up to a poly(log n, 1/ε) multiplicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various scenarios.</description><subject>Adversary models</subject><subject>Algorithms</subject><subject>Robustness</subject><subject>Streaming models</subject><subject>Streaming, sublinear and near linear time algorithms</subject><subject>Theory of computation</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRMFbx7ingwVN0J_uVHEOxKhQEP8Bb2Gx3a2rSrbNJpf-9KakehveG-TEPHiGXQG8BuLhjPM8Y40ckAiFUopj4OCYRpZQnggOckrMQVsNKU6oikhfxDHVrfzx-xc5jXCy2FoPGWjfNLn7xVR-6-LVDq9t6vYyLZumx7j7bcE5OnG6CvTjohLzP7t-mj8n8-eFpWswTzajoksymjueSpRbYAuTgwFQwDNMqS8EJrVyupTVQUQN0b5mRijlnc56nkk3I9fh3g_67t6ErV77H9RBZplIIkIJl2UDdjJRBHwJaV26wbjXuSqDlvpfy0MtAXo2kNu0_9Hf8BRfJW2g</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ben-Eliezer, Omri</creator><creator>Jayaram, Rajesh</creator><creator>Woodruff, David P.</creator><creator>Yogev, Eylon</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0332-6332</orcidid><orcidid>https://orcid.org/0000-0001-8599-2472</orcidid><orcidid>https://orcid.org/0000-0001-6366-5964</orcidid><orcidid>https://orcid.org/0000-0002-2158-1380</orcidid></search><sort><creationdate>20220401</creationdate><title>A Framework for Adversarially Robust Streaming Algorithms</title><author>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a305t-8e2f49632e13d169631cb11cb3a7821f5a7f9a6ec1b0c109a6e3c673ffe949263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adversary models</topic><topic>Algorithms</topic><topic>Robustness</topic><topic>Streaming models</topic><topic>Streaming, sublinear and near linear time algorithms</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-Eliezer, Omri</creatorcontrib><creatorcontrib>Jayaram, Rajesh</creatorcontrib><creatorcontrib>Woodruff, David P.</creatorcontrib><creatorcontrib>Yogev, Eylon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-Eliezer, Omri</au><au>Jayaram, Rajesh</au><au>Woodruff, David P.</au><au>Yogev, Eylon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Framework for Adversarially Robust Streaming Algorithms</atitle><jtitle>Journal of the ACM</jtitle><stitle>ACM JACM</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>69</volume><issue>2</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><artnum>17</artnum><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. In this work, we show that the answer is positive for various important streaming problems in the insertion-only model, including distinct elements and more generally Fp-estimation, Fp-heavy hitters, entropy estimation, and others. For all of these problems, we develop adversarially robust (1+ε)-approximation algorithms whose required space matches that of the best known non-robust algorithms up to a poly(log n, 1/ε) multiplicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various scenarios.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3498334</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-0332-6332</orcidid><orcidid>https://orcid.org/0000-0001-8599-2472</orcidid><orcidid>https://orcid.org/0000-0001-6366-5964</orcidid><orcidid>https://orcid.org/0000-0002-2158-1380</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 2022-04, Vol.69 (2), p.1-33, Article 17 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_journals_2655165388 |
source | ACM Digital Library |
subjects | Adversary models Algorithms Robustness Streaming models Streaming, sublinear and near linear time algorithms Theory of computation |
title | A Framework for Adversarially Robust Streaming Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Framework%20for%20Adversarially%20Robust%20Streaming%20Algorithms&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Ben-Eliezer,%20Omri&rft.date=2022-04-01&rft.volume=69&rft.issue=2&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.artnum=17&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/3498334&rft_dat=%3Cproquest_cross%3E2655165388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655165388&rft_id=info:pmid/&rfr_iscdi=true |