A Framework for Adversarially Robust Streaming Algorithms

We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online mann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2022-04, Vol.69 (2), p.1-33, Article 17
Hauptverfasser: Ben-Eliezer, Omri, Jayaram, Rajesh, Woodruff, David P., Yogev, Eylon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 2
container_start_page 1
container_title Journal of the ACM
container_volume 69
creator Ben-Eliezer, Omri
Jayaram, Rajesh
Woodruff, David P.
Yogev, Eylon
description We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. In this work, we show that the answer is positive for various important streaming problems in the insertion-only model, including distinct elements and more generally Fp-estimation, Fp-heavy hitters, entropy estimation, and others. For all of these problems, we develop adversarially robust (1+ε)-approximation algorithms whose required space matches that of the best known non-robust algorithms up to a poly(log n, 1/ε) multiplicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various scenarios.
doi_str_mv 10.1145/3498334
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655165388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655165388</sourcerecordid><originalsourceid>FETCH-LOGICAL-a305t-8e2f49632e13d169631cb11cb3a7821f5a7f9a6ec1b0c109a6e3c673ffe949263</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRMFbx7ingwVN0J_uVHEOxKhQEP8Bb2Gx3a2rSrbNJpf-9KakehveG-TEPHiGXQG8BuLhjPM8Y40ckAiFUopj4OCYRpZQnggOckrMQVsNKU6oikhfxDHVrfzx-xc5jXCy2FoPGWjfNLn7xVR-6-LVDq9t6vYyLZumx7j7bcE5OnG6CvTjohLzP7t-mj8n8-eFpWswTzajoksymjueSpRbYAuTgwFQwDNMqS8EJrVyupTVQUQN0b5mRijlnc56nkk3I9fh3g_67t6ErV77H9RBZplIIkIJl2UDdjJRBHwJaV26wbjXuSqDlvpfy0MtAXo2kNu0_9Hf8BRfJW2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655165388</pqid></control><display><type>article</type><title>A Framework for Adversarially Robust Streaming Algorithms</title><source>ACM Digital Library</source><creator>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</creator><creatorcontrib>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</creatorcontrib><description>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. In this work, we show that the answer is positive for various important streaming problems in the insertion-only model, including distinct elements and more generally Fp-estimation, Fp-heavy hitters, entropy estimation, and others. For all of these problems, we develop adversarially robust (1+ε)-approximation algorithms whose required space matches that of the best known non-robust algorithms up to a poly(log n, 1/ε) multiplicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various scenarios.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/3498334</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Adversary models ; Algorithms ; Robustness ; Streaming models ; Streaming, sublinear and near linear time algorithms ; Theory of computation</subject><ispartof>Journal of the ACM, 2022-04, Vol.69 (2), p.1-33, Article 17</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><rights>Copyright Association for Computing Machinery Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a305t-8e2f49632e13d169631cb11cb3a7821f5a7f9a6ec1b0c109a6e3c673ffe949263</citedby><cites>FETCH-LOGICAL-a305t-8e2f49632e13d169631cb11cb3a7821f5a7f9a6ec1b0c109a6e3c673ffe949263</cites><orcidid>0000-0003-0332-6332 ; 0000-0001-8599-2472 ; 0000-0001-6366-5964 ; 0000-0002-2158-1380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3498334$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Ben-Eliezer, Omri</creatorcontrib><creatorcontrib>Jayaram, Rajesh</creatorcontrib><creatorcontrib>Woodruff, David P.</creatorcontrib><creatorcontrib>Yogev, Eylon</creatorcontrib><title>A Framework for Adversarially Robust Streaming Algorithms</title><title>Journal of the ACM</title><addtitle>ACM JACM</addtitle><description>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. In this work, we show that the answer is positive for various important streaming problems in the insertion-only model, including distinct elements and more generally Fp-estimation, Fp-heavy hitters, entropy estimation, and others. For all of these problems, we develop adversarially robust (1+ε)-approximation algorithms whose required space matches that of the best known non-robust algorithms up to a poly(log n, 1/ε) multiplicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various scenarios.</description><subject>Adversary models</subject><subject>Algorithms</subject><subject>Robustness</subject><subject>Streaming models</subject><subject>Streaming, sublinear and near linear time algorithms</subject><subject>Theory of computation</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRMFbx7ingwVN0J_uVHEOxKhQEP8Bb2Gx3a2rSrbNJpf-9KakehveG-TEPHiGXQG8BuLhjPM8Y40ckAiFUopj4OCYRpZQnggOckrMQVsNKU6oikhfxDHVrfzx-xc5jXCy2FoPGWjfNLn7xVR-6-LVDq9t6vYyLZumx7j7bcE5OnG6CvTjohLzP7t-mj8n8-eFpWswTzajoksymjueSpRbYAuTgwFQwDNMqS8EJrVyupTVQUQN0b5mRijlnc56nkk3I9fh3g_67t6ErV77H9RBZplIIkIJl2UDdjJRBHwJaV26wbjXuSqDlvpfy0MtAXo2kNu0_9Hf8BRfJW2g</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ben-Eliezer, Omri</creator><creator>Jayaram, Rajesh</creator><creator>Woodruff, David P.</creator><creator>Yogev, Eylon</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0332-6332</orcidid><orcidid>https://orcid.org/0000-0001-8599-2472</orcidid><orcidid>https://orcid.org/0000-0001-6366-5964</orcidid><orcidid>https://orcid.org/0000-0002-2158-1380</orcidid></search><sort><creationdate>20220401</creationdate><title>A Framework for Adversarially Robust Streaming Algorithms</title><author>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a305t-8e2f49632e13d169631cb11cb3a7821f5a7f9a6ec1b0c109a6e3c673ffe949263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adversary models</topic><topic>Algorithms</topic><topic>Robustness</topic><topic>Streaming models</topic><topic>Streaming, sublinear and near linear time algorithms</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-Eliezer, Omri</creatorcontrib><creatorcontrib>Jayaram, Rajesh</creatorcontrib><creatorcontrib>Woodruff, David P.</creatorcontrib><creatorcontrib>Yogev, Eylon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-Eliezer, Omri</au><au>Jayaram, Rajesh</au><au>Woodruff, David P.</au><au>Yogev, Eylon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Framework for Adversarially Robust Streaming Algorithms</atitle><jtitle>Journal of the ACM</jtitle><stitle>ACM JACM</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>69</volume><issue>2</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><artnum>17</artnum><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. In this work, we show that the answer is positive for various important streaming problems in the insertion-only model, including distinct elements and more generally Fp-estimation, Fp-heavy hitters, entropy estimation, and others. For all of these problems, we develop adversarially robust (1+ε)-approximation algorithms whose required space matches that of the best known non-robust algorithms up to a poly(log n, 1/ε) multiplicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various scenarios.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3498334</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-0332-6332</orcidid><orcidid>https://orcid.org/0000-0001-8599-2472</orcidid><orcidid>https://orcid.org/0000-0001-6366-5964</orcidid><orcidid>https://orcid.org/0000-0002-2158-1380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 2022-04, Vol.69 (2), p.1-33, Article 17
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_journals_2655165388
source ACM Digital Library
subjects Adversary models
Algorithms
Robustness
Streaming models
Streaming, sublinear and near linear time algorithms
Theory of computation
title A Framework for Adversarially Robust Streaming Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Framework%20for%20Adversarially%20Robust%20Streaming%20Algorithms&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Ben-Eliezer,%20Omri&rft.date=2022-04-01&rft.volume=69&rft.issue=2&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.artnum=17&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/3498334&rft_dat=%3Cproquest_cross%3E2655165388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655165388&rft_id=info:pmid/&rfr_iscdi=true