Long-term assessments are critical to determining persistence and shoreline protection from oyster reef nature-based coastal defenses

Nature-based coastal defense using bivalve reefs provides a potentially self-sustaining approach for regions facing high coastal land loss, relative sea level rise and increasing frequency and intensity of storms. Success of such nature-based coastal defense depends on the reef-building species'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological engineering 2022-05, Vol.178, p.106603, Article 106603
Hauptverfasser: La Peyre, Megan K., Buie, Sarah Catherine Leblanc, Rossi, Ryann E., Roberts, Brian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nature-based coastal defense using bivalve reefs provides a potentially self-sustaining approach for regions facing high coastal land loss, relative sea level rise and increasing frequency and intensity of storms. Success of such nature-based coastal defense depends on the reef-building species' life history, habitat requirements, and ability to thrive through short-term and longer-term environmental variation, yet few projects have reported on outcomes beyond the first few years. In coastal Louisiana, USA, Crassostrea virginica (oyster) is an ecosystem engineer, creating self-sustaining, vertically accreting reefs that also provide ecosystem services. Here, we examine the short (< 3 years) and medium (> 10 years) term outcomes of experimental reefs constructed in 2009 for nature-based coastal defense in a Louisiana, USA estuarine lake. Oyster reef density, demography, along with adjacent salt marsh, and shoreline movement were compared at six fringing shoreline reefs and paired reference sites over the first three years post-construction (2009–2011), and a decade later (2019–2020). Oyster density measured in 2019–2020 (< 60 ind m−2) was less than 10% of density measured during 2009–2011 (> 1000 ind m−2). This density difference largely reflected a lack of new recruits and small oysters (< 75 mm shell height) in later samples, with adult oyster densities similar between 2011, 2019 and 2020. Lack of smaller oysters in recent sampling likely reflected the impact of multiple extended low salinity events in this region in recent years, including the record-breaking low salinity in 2019. No differences in shoreline characteristics were detected in marsh vegetation, soil properties or nutrient concentrations between reef and reference sites during early and later years. Similarly, shoreline erosion at both reef and reference sites immediately post-construction, and 10 years later, was high (~1 m y−1) indicating a lack of shoreline protection from these reefs. These findings highlight the need to consider both current and future conditions, including the effect of extreme years, when implementing nature-based coastal defense. On the other hand, the persistence of reproductive-sized oysters on the reef 10 years post creation, indicate reef resilience and potential for reef development and shoreline benefits, should better site conditions return in future years. Determining restoration success within variable and dynamic environments requires frequent monitoring wh
ISSN:0925-8574
1872-6992
DOI:10.1016/j.ecoleng.2022.106603