Feature Selection and Performance Improvement of Malware Detection System using Cuckoo Search Optimization and Rough Sets
The proliferation of malware is a severe threat to host and network-based systems. Design and evaluation of efficient malware detection methods is the need of the hour. Windows Portable Executable (PE) files are a primary source of windows based malware. Static malware detection involves an analysis...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2020, Vol.11 (5) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 11 |
creator | P, Ravi Kiran Varma Raju, PLN V, K Kalidindi, Akhila |
description | The proliferation of malware is a severe threat to host and network-based systems. Design and evaluation of efficient malware detection methods is the need of the hour. Windows Portable Executable (PE) files are a primary source of windows based malware. Static malware detection involves an analysis of several PE header file features and can be done with the help of machine learning tools. In the design of efficient machine learning models for malware detection, feature reduction plays a crucial role. Rough set dependency degree is a proven tool for feature reduction. However, quick reduct using rough sets is an NP-hard problem. This paper proposes a hybrid Rough Set Feature Selection using Cuckoo Search Optimization, RSFSCSO, in finding the best collection of reduced features for malware detection. Random forest classifier is used to evaluate the proposed algorithm; the analysis of results proves that the proposed method is highly efficient. |
doi_str_mv | 10.14569/IJACSA.2020.0110587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655153695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655153695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-314b5212a51cbea944174e29f5aa3bec70c2a00fcfb5b130c2e597028bcf475a3</originalsourceid><addsrcrecordid>eNo9kFFPwjAQxxujiQT5Bj408XnYduu6PRIUxWAwoolvTVevMGQrtp0GP70ViPdyd7n__S_3Q-iSkiHNeF5eTx9G48VoyAgjQ0Ip4YU4QT1GeZ5wLsjpvi4SSsTbORp4vyYx0pLlRdpDuwmo0DnAC9iADrVtsWrf8RM4Y12jWg142myd_YIG2oCtwY9q863iwg2E48Ji5wM0uPN1u8TjTn9YG-2U0ys834a6qX_Uv_Gz7ZarOA3-Ap0ZtfEwOOY-ep3cvozvk9n8bjoezRLNRBaSlGYVZ5QpTnUFqswyKjJgpeFKpRVoQTRThBhtKl7RNHbAS0FYUWmTCa7SPro6-MYvPjvwQa5t59p4UrKcc8rTvORRlR1U2lnvHRi5dXWj3E5SIvec5YGz_OMsj5zTX4POcmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655153695</pqid></control><display><type>article</type><title>Feature Selection and Performance Improvement of Malware Detection System using Cuckoo Search Optimization and Rough Sets</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>P, Ravi Kiran Varma ; Raju, PLN ; V, K ; Kalidindi, Akhila</creator><creatorcontrib>P, Ravi Kiran Varma ; Raju, PLN ; V, K ; Kalidindi, Akhila</creatorcontrib><description>The proliferation of malware is a severe threat to host and network-based systems. Design and evaluation of efficient malware detection methods is the need of the hour. Windows Portable Executable (PE) files are a primary source of windows based malware. Static malware detection involves an analysis of several PE header file features and can be done with the help of machine learning tools. In the design of efficient machine learning models for malware detection, feature reduction plays a crucial role. Rough set dependency degree is a proven tool for feature reduction. However, quick reduct using rough sets is an NP-hard problem. This paper proposes a hybrid Rough Set Feature Selection using Cuckoo Search Optimization, RSFSCSO, in finding the best collection of reduced features for malware detection. Random forest classifier is used to evaluate the proposed algorithm; the analysis of results proves that the proposed method is highly efficient.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2020.0110587</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Algorithms ; Feature selection ; Header files ; Machine learning ; Malware ; Optimization ; Reduction ; Windows (computer programs)</subject><ispartof>International journal of advanced computer science & applications, 2020, Vol.11 (5)</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>P, Ravi Kiran Varma</creatorcontrib><creatorcontrib>Raju, PLN</creatorcontrib><creatorcontrib>V, K</creatorcontrib><creatorcontrib>Kalidindi, Akhila</creatorcontrib><title>Feature Selection and Performance Improvement of Malware Detection System using Cuckoo Search Optimization and Rough Sets</title><title>International journal of advanced computer science & applications</title><description>The proliferation of malware is a severe threat to host and network-based systems. Design and evaluation of efficient malware detection methods is the need of the hour. Windows Portable Executable (PE) files are a primary source of windows based malware. Static malware detection involves an analysis of several PE header file features and can be done with the help of machine learning tools. In the design of efficient machine learning models for malware detection, feature reduction plays a crucial role. Rough set dependency degree is a proven tool for feature reduction. However, quick reduct using rough sets is an NP-hard problem. This paper proposes a hybrid Rough Set Feature Selection using Cuckoo Search Optimization, RSFSCSO, in finding the best collection of reduced features for malware detection. Random forest classifier is used to evaluate the proposed algorithm; the analysis of results proves that the proposed method is highly efficient.</description><subject>Algorithms</subject><subject>Feature selection</subject><subject>Header files</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Optimization</subject><subject>Reduction</subject><subject>Windows (computer programs)</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kFFPwjAQxxujiQT5Bj408XnYduu6PRIUxWAwoolvTVevMGQrtp0GP70ViPdyd7n__S_3Q-iSkiHNeF5eTx9G48VoyAgjQ0Ip4YU4QT1GeZ5wLsjpvi4SSsTbORp4vyYx0pLlRdpDuwmo0DnAC9iADrVtsWrf8RM4Y12jWg142myd_YIG2oCtwY9q863iwg2E48Ji5wM0uPN1u8TjTn9YG-2U0ys834a6qX_Uv_Gz7ZarOA3-Ap0ZtfEwOOY-ep3cvozvk9n8bjoezRLNRBaSlGYVZ5QpTnUFqswyKjJgpeFKpRVoQTRThBhtKl7RNHbAS0FYUWmTCa7SPro6-MYvPjvwQa5t59p4UrKcc8rTvORRlR1U2lnvHRi5dXWj3E5SIvec5YGz_OMsj5zTX4POcmM</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>P, Ravi Kiran Varma</creator><creator>Raju, PLN</creator><creator>V, K</creator><creator>Kalidindi, Akhila</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>Feature Selection and Performance Improvement of Malware Detection System using Cuckoo Search Optimization and Rough Sets</title><author>P, Ravi Kiran Varma ; Raju, PLN ; V, K ; Kalidindi, Akhila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-314b5212a51cbea944174e29f5aa3bec70c2a00fcfb5b130c2e597028bcf475a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Feature selection</topic><topic>Header files</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Optimization</topic><topic>Reduction</topic><topic>Windows (computer programs)</topic><toplevel>online_resources</toplevel><creatorcontrib>P, Ravi Kiran Varma</creatorcontrib><creatorcontrib>Raju, PLN</creatorcontrib><creatorcontrib>V, K</creatorcontrib><creatorcontrib>Kalidindi, Akhila</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>P, Ravi Kiran Varma</au><au>Raju, PLN</au><au>V, K</au><au>Kalidindi, Akhila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Selection and Performance Improvement of Malware Detection System using Cuckoo Search Optimization and Rough Sets</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2020</date><risdate>2020</risdate><volume>11</volume><issue>5</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>The proliferation of malware is a severe threat to host and network-based systems. Design and evaluation of efficient malware detection methods is the need of the hour. Windows Portable Executable (PE) files are a primary source of windows based malware. Static malware detection involves an analysis of several PE header file features and can be done with the help of machine learning tools. In the design of efficient machine learning models for malware detection, feature reduction plays a crucial role. Rough set dependency degree is a proven tool for feature reduction. However, quick reduct using rough sets is an NP-hard problem. This paper proposes a hybrid Rough Set Feature Selection using Cuckoo Search Optimization, RSFSCSO, in finding the best collection of reduced features for malware detection. Random forest classifier is used to evaluate the proposed algorithm; the analysis of results proves that the proposed method is highly efficient.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2020.0110587</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2020, Vol.11 (5) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2655153695 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Feature selection Header files Machine learning Malware Optimization Reduction Windows (computer programs) |
title | Feature Selection and Performance Improvement of Malware Detection System using Cuckoo Search Optimization and Rough Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Selection%20and%20Performance%20Improvement%20of%20Malware%20Detection%20System%20using%20Cuckoo%20Search%20Optimization%20and%20Rough%20Sets&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=P,%20Ravi%20Kiran%20Varma&rft.date=2020&rft.volume=11&rft.issue=5&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2020.0110587&rft_dat=%3Cproquest_cross%3E2655153695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655153695&rft_id=info:pmid/&rfr_iscdi=true |