Edge Enhancement by Noise Suppression in HSI Color Model of UAV Video with Adaptive Thresholding

UAV video often suffers from noise, blurred edges, fewer details. Quality improvement is essential by noise suppression with an enhancement of edges. Edge detection algorithms for the correct classification of an object and identification have swiftly displayed a system toward processing moving imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2022-05, Vol.124 (1), p.163-186
Hauptverfasser: Srivastava, Ashish, Prakash, Jay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 1
container_start_page 163
container_title Wireless personal communications
container_volume 124
creator Srivastava, Ashish
Prakash, Jay
description UAV video often suffers from noise, blurred edges, fewer details. Quality improvement is essential by noise suppression with an enhancement of edges. Edge detection algorithms for the correct classification of an object and identification have swiftly displayed a system toward processing moving images or whatsoever portion taken from UAVs or drones. To realize it in this paper, we propose a novel algorithm based on HSI transformed domain. Meanwhile, within the paper, we compile some significant analysis within the field of edge enhancement. Relying upon a laboratory evaluation regarding specific proposed techniques for noise suppression with detection of edges and its enhancement process on the UAV video dataset, we confirmed individual contributions, plus our methods’ achievement corresponded over the existent ones. Our proposed Edge Enhancement Algorithm with an HSI color model is the first with better results to the best of our research knowledge. The hybrid algorithm’s effectiveness in dealing with noise reduction working with different videos by finding the SSI, MSE, NRMSE, SNR, PSNR reference-based parameters, and with a reference-less based score, viz. BRISQUE. Our research typically provides a plan to assess the edge with image enhancement from the application’s perspective, encouraging the reformers’ awareness to be evaluated in a particular computer vision context. Results obtained the outcome of the experiment proving that assertion.
doi_str_mv 10.1007/s11277-021-09334-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655135263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655135263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-abc5d3fa102d832473b71fdbafa292dd907f99cda1fe775200bd3e3e54093793</originalsourceid><addsrcrecordid>eNp9kE1PAjEURRujiYj-AVdNXFf7MUPpkhAUEtQFSNzVzrTDlAzt2A4K_94qJu5cvc099-YdAK4JviUY87tICOUcYUoQFoxlaH8CeiTnFA1Z9noKelhQgQaU0HNwEeMG44QJ2gNvE702cOJq5UqzNa6DxQE-eRsNXOzaNpgYrXfQOjhdzODYNz7AR69NA30FX0YruLLaePhpuxqOtGo7-2Hgsk5c7Rtt3foSnFWqiebq9_bB8n6yHE_R_PlhNh7NUcmI6JAqylyzShFM9ZDRjLOCk0oXqlJUUK0F5pUQpVakMpznFONCM8NMnqV_uWB9cHOsbYN_35nYyY3fBZcWJR3kOWE5HbCUosdUGXyMwVSyDXarwkESLL9FyqNImUTKH5FynyB2hGIKu7UJf9X_UF9jvHZe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655135263</pqid></control><display><type>article</type><title>Edge Enhancement by Noise Suppression in HSI Color Model of UAV Video with Adaptive Thresholding</title><source>SpringerLink Journals</source><creator>Srivastava, Ashish ; Prakash, Jay</creator><creatorcontrib>Srivastava, Ashish ; Prakash, Jay</creatorcontrib><description>UAV video often suffers from noise, blurred edges, fewer details. Quality improvement is essential by noise suppression with an enhancement of edges. Edge detection algorithms for the correct classification of an object and identification have swiftly displayed a system toward processing moving images or whatsoever portion taken from UAVs or drones. To realize it in this paper, we propose a novel algorithm based on HSI transformed domain. Meanwhile, within the paper, we compile some significant analysis within the field of edge enhancement. Relying upon a laboratory evaluation regarding specific proposed techniques for noise suppression with detection of edges and its enhancement process on the UAV video dataset, we confirmed individual contributions, plus our methods’ achievement corresponded over the existent ones. Our proposed Edge Enhancement Algorithm with an HSI color model is the first with better results to the best of our research knowledge. The hybrid algorithm’s effectiveness in dealing with noise reduction working with different videos by finding the SSI, MSE, NRMSE, SNR, PSNR reference-based parameters, and with a reference-less based score, viz. BRISQUE. Our research typically provides a plan to assess the edge with image enhancement from the application’s perspective, encouraging the reformers’ awareness to be evaluated in a particular computer vision context. Results obtained the outcome of the experiment proving that assertion.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-021-09334-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Color ; Communications Engineering ; Computer Communication Networks ; Computer vision ; Edge detection ; Engineering ; Evaluation ; Image enhancement ; Moving images ; Networks ; Noise ; Noise reduction ; Signal,Image and Speech Processing ; Unmanned aerial vehicles</subject><ispartof>Wireless personal communications, 2022-05, Vol.124 (1), p.163-186</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-abc5d3fa102d832473b71fdbafa292dd907f99cda1fe775200bd3e3e54093793</citedby><cites>FETCH-LOGICAL-c319t-abc5d3fa102d832473b71fdbafa292dd907f99cda1fe775200bd3e3e54093793</cites><orcidid>0000-0003-1439-1885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-021-09334-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-021-09334-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Srivastava, Ashish</creatorcontrib><creatorcontrib>Prakash, Jay</creatorcontrib><title>Edge Enhancement by Noise Suppression in HSI Color Model of UAV Video with Adaptive Thresholding</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>UAV video often suffers from noise, blurred edges, fewer details. Quality improvement is essential by noise suppression with an enhancement of edges. Edge detection algorithms for the correct classification of an object and identification have swiftly displayed a system toward processing moving images or whatsoever portion taken from UAVs or drones. To realize it in this paper, we propose a novel algorithm based on HSI transformed domain. Meanwhile, within the paper, we compile some significant analysis within the field of edge enhancement. Relying upon a laboratory evaluation regarding specific proposed techniques for noise suppression with detection of edges and its enhancement process on the UAV video dataset, we confirmed individual contributions, plus our methods’ achievement corresponded over the existent ones. Our proposed Edge Enhancement Algorithm with an HSI color model is the first with better results to the best of our research knowledge. The hybrid algorithm’s effectiveness in dealing with noise reduction working with different videos by finding the SSI, MSE, NRMSE, SNR, PSNR reference-based parameters, and with a reference-less based score, viz. BRISQUE. Our research typically provides a plan to assess the edge with image enhancement from the application’s perspective, encouraging the reformers’ awareness to be evaluated in a particular computer vision context. Results obtained the outcome of the experiment proving that assertion.</description><subject>Algorithms</subject><subject>Color</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer vision</subject><subject>Edge detection</subject><subject>Engineering</subject><subject>Evaluation</subject><subject>Image enhancement</subject><subject>Moving images</subject><subject>Networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Signal,Image and Speech Processing</subject><subject>Unmanned aerial vehicles</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEURRujiYj-AVdNXFf7MUPpkhAUEtQFSNzVzrTDlAzt2A4K_94qJu5cvc099-YdAK4JviUY87tICOUcYUoQFoxlaH8CeiTnFA1Z9noKelhQgQaU0HNwEeMG44QJ2gNvE702cOJq5UqzNa6DxQE-eRsNXOzaNpgYrXfQOjhdzODYNz7AR69NA30FX0YruLLaePhpuxqOtGo7-2Hgsk5c7Rtt3foSnFWqiebq9_bB8n6yHE_R_PlhNh7NUcmI6JAqylyzShFM9ZDRjLOCk0oXqlJUUK0F5pUQpVakMpznFONCM8NMnqV_uWB9cHOsbYN_35nYyY3fBZcWJR3kOWE5HbCUosdUGXyMwVSyDXarwkESLL9FyqNImUTKH5FynyB2hGIKu7UJf9X_UF9jvHZe</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Srivastava, Ashish</creator><creator>Prakash, Jay</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1439-1885</orcidid></search><sort><creationdate>20220501</creationdate><title>Edge Enhancement by Noise Suppression in HSI Color Model of UAV Video with Adaptive Thresholding</title><author>Srivastava, Ashish ; Prakash, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-abc5d3fa102d832473b71fdbafa292dd907f99cda1fe775200bd3e3e54093793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer vision</topic><topic>Edge detection</topic><topic>Engineering</topic><topic>Evaluation</topic><topic>Image enhancement</topic><topic>Moving images</topic><topic>Networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Signal,Image and Speech Processing</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Ashish</creatorcontrib><creatorcontrib>Prakash, Jay</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Ashish</au><au>Prakash, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Enhancement by Noise Suppression in HSI Color Model of UAV Video with Adaptive Thresholding</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>124</volume><issue>1</issue><spage>163</spage><epage>186</epage><pages>163-186</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>UAV video often suffers from noise, blurred edges, fewer details. Quality improvement is essential by noise suppression with an enhancement of edges. Edge detection algorithms for the correct classification of an object and identification have swiftly displayed a system toward processing moving images or whatsoever portion taken from UAVs or drones. To realize it in this paper, we propose a novel algorithm based on HSI transformed domain. Meanwhile, within the paper, we compile some significant analysis within the field of edge enhancement. Relying upon a laboratory evaluation regarding specific proposed techniques for noise suppression with detection of edges and its enhancement process on the UAV video dataset, we confirmed individual contributions, plus our methods’ achievement corresponded over the existent ones. Our proposed Edge Enhancement Algorithm with an HSI color model is the first with better results to the best of our research knowledge. The hybrid algorithm’s effectiveness in dealing with noise reduction working with different videos by finding the SSI, MSE, NRMSE, SNR, PSNR reference-based parameters, and with a reference-less based score, viz. BRISQUE. Our research typically provides a plan to assess the edge with image enhancement from the application’s perspective, encouraging the reformers’ awareness to be evaluated in a particular computer vision context. Results obtained the outcome of the experiment proving that assertion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-021-09334-x</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1439-1885</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2022-05, Vol.124 (1), p.163-186
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_journals_2655135263
source SpringerLink Journals
subjects Algorithms
Color
Communications Engineering
Computer Communication Networks
Computer vision
Edge detection
Engineering
Evaluation
Image enhancement
Moving images
Networks
Noise
Noise reduction
Signal,Image and Speech Processing
Unmanned aerial vehicles
title Edge Enhancement by Noise Suppression in HSI Color Model of UAV Video with Adaptive Thresholding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Enhancement%20by%20Noise%20Suppression%20in%20HSI%20Color%20Model%20of%20UAV%20Video%20with%20Adaptive%20Thresholding&rft.jtitle=Wireless%20personal%20communications&rft.au=Srivastava,%20Ashish&rft.date=2022-05-01&rft.volume=124&rft.issue=1&rft.spage=163&rft.epage=186&rft.pages=163-186&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-021-09334-x&rft_dat=%3Cproquest_cross%3E2655135263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655135263&rft_id=info:pmid/&rfr_iscdi=true