Measuring Impact of Traffic Parameters in Adaptive Signal Control through Microscopic Simulation

This paper aims to exploit the traffic parameters setting in adaptive traffic control. In this study, is known as Dynamic Timing Optimiser (DTO). DTO is an online algorithm, uses real-time optimisation in estimating cycle length according to fluctuations arrival flow registered from the detector. DT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2020, Vol.11 (11)
Hauptverfasser: Aminzal, Fatin Ayuni Bt, Binti, Munzilah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title International journal of advanced computer science & applications
container_volume 11
creator Aminzal, Fatin Ayuni Bt
Binti, Munzilah
description This paper aims to exploit the traffic parameters setting in adaptive traffic control. In this study, is known as Dynamic Timing Optimiser (DTO). DTO is an online algorithm, uses real-time optimisation in estimating cycle length according to fluctuations arrival flow registered from the detector. DTO cycle time estimation is also incorporated with preset parameters including saturation flow rate (s) and lost time (L). However, these traffic flow parameters commonly inputted as one deterministic value which adopted for the whole day. For example, presumed constant of saturation flow rate (s) do not accurately represent an actual oversaturated condition. The effects of employing inaccurate saturation flow rate (s) lead to the underestimation of cycle length. Therefore, a set of parameters value is applied and tested encompass of default value and adjusted value that implied a heaviest traffic condition through microscopic simulation. This resulted in outcomes of intersection performance in terms of intersection delay, travel time and throughput. According to simulation result, saturation flow rate (s) parameters show a great influence in cycle length optimisation compared to lost time (L) parameter. Employing a realistic saturation flow rate (s) while inputting parameters in DTO according to real traffic conditions contribute to a less intersection delay. In addition, the study revealed that a longer lost time (L) configured in the signal system, a longer cycle length generated by DTO algorithm. As predicted, high delay occurs during long cycle length yet benefited in allowing a higher throughput.
doi_str_mv 10.14569/IJACSA.2020.0111122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655124662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655124662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-882e93158d41d5927f74fc5caf6d85b4ec8a1e628ace357fbc128f5b70208ef03</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EElXpP-BgiXOK7cSOc4wiHkWtQGqRuBnXsVtXSRxsB4l_T_qYy-5hdjXzAXCP0RxnlBWPi7eyWpdzggiaIzyKkCswIZiyhNIcXZ92nmCUf92CWQgHNCotCOPpBHyvtAyDt90OLtpeqgidgRsvjbEKfkgvWx21D9B2sKxlH-2vhmu762QDK9dF7xoY994Nuz1cWeVdUK4fL9e2HRoZrevuwI2RTdCzy5yCz-enTfWaLN9fFlW5TBTJs5hwTnSRjjnrDNe0ILnJM6OokobVnG4zrbjEmhEulU5pbrYKE27oNh9bc21QOgUP57-9dz-DDlEc3ODHnEEQRikmGWNkdGVn1zFq8NqI3ttW-j-BkTjhFGec4ohTXHCm__RcaR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655124662</pqid></control><display><type>article</type><title>Measuring Impact of Traffic Parameters in Adaptive Signal Control through Microscopic Simulation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aminzal, Fatin Ayuni Bt ; Binti, Munzilah</creator><creatorcontrib>Aminzal, Fatin Ayuni Bt ; Binti, Munzilah</creatorcontrib><description>This paper aims to exploit the traffic parameters setting in adaptive traffic control. In this study, is known as Dynamic Timing Optimiser (DTO). DTO is an online algorithm, uses real-time optimisation in estimating cycle length according to fluctuations arrival flow registered from the detector. DTO cycle time estimation is also incorporated with preset parameters including saturation flow rate (s) and lost time (L). However, these traffic flow parameters commonly inputted as one deterministic value which adopted for the whole day. For example, presumed constant of saturation flow rate (s) do not accurately represent an actual oversaturated condition. The effects of employing inaccurate saturation flow rate (s) lead to the underestimation of cycle length. Therefore, a set of parameters value is applied and tested encompass of default value and adjusted value that implied a heaviest traffic condition through microscopic simulation. This resulted in outcomes of intersection performance in terms of intersection delay, travel time and throughput. According to simulation result, saturation flow rate (s) parameters show a great influence in cycle length optimisation compared to lost time (L) parameter. Employing a realistic saturation flow rate (s) while inputting parameters in DTO according to real traffic conditions contribute to a less intersection delay. In addition, the study revealed that a longer lost time (L) configured in the signal system, a longer cycle length generated by DTO algorithm. As predicted, high delay occurs during long cycle length yet benefited in allowing a higher throughput.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2020.0111122</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Adaptive control ; Algorithms ; Cycle time ; Delay ; Estimation ; Flow velocity ; Intersections ; Optimization ; Parameters ; Saturation ; Simulation ; Traffic ; Traffic control ; Traffic engineering ; Traffic flow ; Travel time</subject><ispartof>International journal of advanced computer science &amp; applications, 2020, Vol.11 (11)</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Aminzal, Fatin Ayuni Bt</creatorcontrib><creatorcontrib>Binti, Munzilah</creatorcontrib><title>Measuring Impact of Traffic Parameters in Adaptive Signal Control through Microscopic Simulation</title><title>International journal of advanced computer science &amp; applications</title><description>This paper aims to exploit the traffic parameters setting in adaptive traffic control. In this study, is known as Dynamic Timing Optimiser (DTO). DTO is an online algorithm, uses real-time optimisation in estimating cycle length according to fluctuations arrival flow registered from the detector. DTO cycle time estimation is also incorporated with preset parameters including saturation flow rate (s) and lost time (L). However, these traffic flow parameters commonly inputted as one deterministic value which adopted for the whole day. For example, presumed constant of saturation flow rate (s) do not accurately represent an actual oversaturated condition. The effects of employing inaccurate saturation flow rate (s) lead to the underestimation of cycle length. Therefore, a set of parameters value is applied and tested encompass of default value and adjusted value that implied a heaviest traffic condition through microscopic simulation. This resulted in outcomes of intersection performance in terms of intersection delay, travel time and throughput. According to simulation result, saturation flow rate (s) parameters show a great influence in cycle length optimisation compared to lost time (L) parameter. Employing a realistic saturation flow rate (s) while inputting parameters in DTO according to real traffic conditions contribute to a less intersection delay. In addition, the study revealed that a longer lost time (L) configured in the signal system, a longer cycle length generated by DTO algorithm. As predicted, high delay occurs during long cycle length yet benefited in allowing a higher throughput.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Cycle time</subject><subject>Delay</subject><subject>Estimation</subject><subject>Flow velocity</subject><subject>Intersections</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Saturation</subject><subject>Simulation</subject><subject>Traffic</subject><subject>Traffic control</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>Travel time</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEtPwzAQhC0EElXpP-BgiXOK7cSOc4wiHkWtQGqRuBnXsVtXSRxsB4l_T_qYy-5hdjXzAXCP0RxnlBWPi7eyWpdzggiaIzyKkCswIZiyhNIcXZ92nmCUf92CWQgHNCotCOPpBHyvtAyDt90OLtpeqgidgRsvjbEKfkgvWx21D9B2sKxlH-2vhmu762QDK9dF7xoY994Nuz1cWeVdUK4fL9e2HRoZrevuwI2RTdCzy5yCz-enTfWaLN9fFlW5TBTJs5hwTnSRjjnrDNe0ILnJM6OokobVnG4zrbjEmhEulU5pbrYKE27oNh9bc21QOgUP57-9dz-DDlEc3ODHnEEQRikmGWNkdGVn1zFq8NqI3ttW-j-BkTjhFGec4ohTXHCm__RcaR0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Aminzal, Fatin Ayuni Bt</creator><creator>Binti, Munzilah</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>Measuring Impact of Traffic Parameters in Adaptive Signal Control through Microscopic Simulation</title><author>Aminzal, Fatin Ayuni Bt ; Binti, Munzilah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-882e93158d41d5927f74fc5caf6d85b4ec8a1e628ace357fbc128f5b70208ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Cycle time</topic><topic>Delay</topic><topic>Estimation</topic><topic>Flow velocity</topic><topic>Intersections</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Saturation</topic><topic>Simulation</topic><topic>Traffic</topic><topic>Traffic control</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>Travel time</topic><toplevel>online_resources</toplevel><creatorcontrib>Aminzal, Fatin Ayuni Bt</creatorcontrib><creatorcontrib>Binti, Munzilah</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aminzal, Fatin Ayuni Bt</au><au>Binti, Munzilah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring Impact of Traffic Parameters in Adaptive Signal Control through Microscopic Simulation</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2020</date><risdate>2020</risdate><volume>11</volume><issue>11</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>This paper aims to exploit the traffic parameters setting in adaptive traffic control. In this study, is known as Dynamic Timing Optimiser (DTO). DTO is an online algorithm, uses real-time optimisation in estimating cycle length according to fluctuations arrival flow registered from the detector. DTO cycle time estimation is also incorporated with preset parameters including saturation flow rate (s) and lost time (L). However, these traffic flow parameters commonly inputted as one deterministic value which adopted for the whole day. For example, presumed constant of saturation flow rate (s) do not accurately represent an actual oversaturated condition. The effects of employing inaccurate saturation flow rate (s) lead to the underestimation of cycle length. Therefore, a set of parameters value is applied and tested encompass of default value and adjusted value that implied a heaviest traffic condition through microscopic simulation. This resulted in outcomes of intersection performance in terms of intersection delay, travel time and throughput. According to simulation result, saturation flow rate (s) parameters show a great influence in cycle length optimisation compared to lost time (L) parameter. Employing a realistic saturation flow rate (s) while inputting parameters in DTO according to real traffic conditions contribute to a less intersection delay. In addition, the study revealed that a longer lost time (L) configured in the signal system, a longer cycle length generated by DTO algorithm. As predicted, high delay occurs during long cycle length yet benefited in allowing a higher throughput.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2020.0111122</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2020, Vol.11 (11)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2655124662
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive control
Algorithms
Cycle time
Delay
Estimation
Flow velocity
Intersections
Optimization
Parameters
Saturation
Simulation
Traffic
Traffic control
Traffic engineering
Traffic flow
Travel time
title Measuring Impact of Traffic Parameters in Adaptive Signal Control through Microscopic Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Impact%20of%20Traffic%20Parameters%20in%20Adaptive%20Signal%20Control%20through%20Microscopic%20Simulation&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Aminzal,%20Fatin%20Ayuni%20Bt&rft.date=2020&rft.volume=11&rft.issue=11&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2020.0111122&rft_dat=%3Cproquest_cross%3E2655124662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655124662&rft_id=info:pmid/&rfr_iscdi=true