Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem

In graph theory, the k-minimum spanning tree problem is considered to be one of the well-known NP hard problems to solve. This paper address this problem by proposing several hybrid approximate approaches based on the combination of simulated annealing, tabu search and ant colony optimization algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2021, Vol.12 (2)
Hauptverfasser: Addou, El Houcine, Serghini, Abelhafid, Bekkaye, El
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title International journal of advanced computer science & applications
container_volume 12
creator Addou, El Houcine
Serghini, Abelhafid
Bekkaye, El
description In graph theory, the k-minimum spanning tree problem is considered to be one of the well-known NP hard problems to solve. This paper address this problem by proposing several hybrid approximate approaches based on the combination of simulated annealing, tabu search and ant colony optimization algorithms. The performances of the proposed methods are compared to other approaches from the literature using the same well-known library of benchmark instances.
doi_str_mv 10.14569/IJACSA.2021.0120288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655119919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655119919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-614932b886d8c764227377d3fe28efd006fa89fbeee9d6e0c532812681045d543</originalsourceid><addsrcrecordid>eNotUNtOg0AQJUYTm9o_8GETX6XuhV2WR0LU1tTUhJr4RhYYLBV2cQGT-gP-ttvLvJy5nDOTOZ53S_CcBFxED8uXOEnjOcWUzDFxIOWFN6GEC5_zEF8ec-kTHH5ce7O-32EXLKJCson3t9jnti5R3HXWqGILPcpVDyUyGqV1OzZqcEWsNaim1p_3aKPyEaWgbLFFSh9GA0pMY_QerbuhbutfNdROXBmLUtP8OBEatoC-_Ndau4UtSjul9aG9sQDozZq8gfbGu6pU08PsjFPv_elxkyz81fp5mcQrv2CUD74gQcRoLqUoZRGKgNKQhWHJKqASqhJjUSkZVTkARKUAXHBGJXGvEhzwkgds6t2d9rp3v0foh2xnRqvdyYwKzgmJIhI5VnBiFdb0vYUq62zdKrvPCM6Ormcn17OD69nZdfYPR791ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655119919</pqid></control><display><type>article</type><title>Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Addou, El Houcine ; Serghini, Abelhafid ; Bekkaye, El</creator><creatorcontrib>Addou, El Houcine ; Serghini, Abelhafid ; Bekkaye, El</creatorcontrib><description>In graph theory, the k-minimum spanning tree problem is considered to be one of the well-known NP hard problems to solve. This paper address this problem by proposing several hybrid approximate approaches based on the combination of simulated annealing, tabu search and ant colony optimization algorithms. The performances of the proposed methods are compared to other approaches from the literature using the same well-known library of benchmark instances.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2021.0120288</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Algorithms ; Ant colony optimization ; Computer science ; Experiments ; Graph theory ; Methods ; Neighborhoods ; Optimization algorithms ; Simulated annealing ; Tabu search ; Trees</subject><ispartof>International journal of advanced computer science &amp; applications, 2021, Vol.12 (2)</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-614932b886d8c764227377d3fe28efd006fa89fbeee9d6e0c532812681045d543</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Addou, El Houcine</creatorcontrib><creatorcontrib>Serghini, Abelhafid</creatorcontrib><creatorcontrib>Bekkaye, El</creatorcontrib><title>Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem</title><title>International journal of advanced computer science &amp; applications</title><description>In graph theory, the k-minimum spanning tree problem is considered to be one of the well-known NP hard problems to solve. This paper address this problem by proposing several hybrid approximate approaches based on the combination of simulated annealing, tabu search and ant colony optimization algorithms. The performances of the proposed methods are compared to other approaches from the literature using the same well-known library of benchmark instances.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Computer science</subject><subject>Experiments</subject><subject>Graph theory</subject><subject>Methods</subject><subject>Neighborhoods</subject><subject>Optimization algorithms</subject><subject>Simulated annealing</subject><subject>Tabu search</subject><subject>Trees</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotUNtOg0AQJUYTm9o_8GETX6XuhV2WR0LU1tTUhJr4RhYYLBV2cQGT-gP-ttvLvJy5nDOTOZ53S_CcBFxED8uXOEnjOcWUzDFxIOWFN6GEC5_zEF8ec-kTHH5ce7O-32EXLKJCson3t9jnti5R3HXWqGILPcpVDyUyGqV1OzZqcEWsNaim1p_3aKPyEaWgbLFFSh9GA0pMY_QerbuhbutfNdROXBmLUtP8OBEatoC-_Ndau4UtSjul9aG9sQDozZq8gfbGu6pU08PsjFPv_elxkyz81fp5mcQrv2CUD74gQcRoLqUoZRGKgNKQhWHJKqASqhJjUSkZVTkARKUAXHBGJXGvEhzwkgds6t2d9rp3v0foh2xnRqvdyYwKzgmJIhI5VnBiFdb0vYUq62zdKrvPCM6Ormcn17OD69nZdfYPR791ng</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Addou, El Houcine</creator><creator>Serghini, Abelhafid</creator><creator>Bekkaye, El</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2021</creationdate><title>Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem</title><author>Addou, El Houcine ; Serghini, Abelhafid ; Bekkaye, El</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-614932b886d8c764227377d3fe28efd006fa89fbeee9d6e0c532812681045d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Computer science</topic><topic>Experiments</topic><topic>Graph theory</topic><topic>Methods</topic><topic>Neighborhoods</topic><topic>Optimization algorithms</topic><topic>Simulated annealing</topic><topic>Tabu search</topic><topic>Trees</topic><toplevel>online_resources</toplevel><creatorcontrib>Addou, El Houcine</creatorcontrib><creatorcontrib>Serghini, Abelhafid</creatorcontrib><creatorcontrib>Bekkaye, El</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Addou, El Houcine</au><au>Serghini, Abelhafid</au><au>Bekkaye, El</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2021</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>In graph theory, the k-minimum spanning tree problem is considered to be one of the well-known NP hard problems to solve. This paper address this problem by proposing several hybrid approximate approaches based on the combination of simulated annealing, tabu search and ant colony optimization algorithms. The performances of the proposed methods are compared to other approaches from the literature using the same well-known library of benchmark instances.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2021.0120288</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2021, Vol.12 (2)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2655119919
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Ant colony optimization
Computer science
Experiments
Graph theory
Methods
Neighborhoods
Optimization algorithms
Simulated annealing
Tabu search
Trees
title Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Approaches%20based%20on%20Simulated%20Annealing,%20Tabu%20Search%20and%20Ant%20Colony%20Optimization%20for%20Solving%20the%20k-Minimum%20Spanning%20Tree%20Problem&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Addou,%20El%20Houcine&rft.date=2021&rft.volume=12&rft.issue=2&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2021.0120288&rft_dat=%3Cproquest_cross%3E2655119919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655119919&rft_id=info:pmid/&rfr_iscdi=true