Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem
In graph theory, the k-minimum spanning tree problem is considered to be one of the well-known NP hard problems to solve. This paper address this problem by proposing several hybrid approximate approaches based on the combination of simulated annealing, tabu search and ant colony optimization algori...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2021, Vol.12 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 12 |
creator | Addou, El Houcine Serghini, Abelhafid Bekkaye, El |
description | In graph theory, the k-minimum spanning tree problem is considered to be one of the well-known NP hard problems to solve. This paper address this problem by proposing several hybrid approximate approaches based on the combination of simulated annealing, tabu search and ant colony optimization algorithms. The performances of the proposed methods are compared to other approaches from the literature using the same well-known library of benchmark instances. |
doi_str_mv | 10.14569/IJACSA.2021.0120288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655119919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655119919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-614932b886d8c764227377d3fe28efd006fa89fbeee9d6e0c532812681045d543</originalsourceid><addsrcrecordid>eNotUNtOg0AQJUYTm9o_8GETX6XuhV2WR0LU1tTUhJr4RhYYLBV2cQGT-gP-ttvLvJy5nDOTOZ53S_CcBFxED8uXOEnjOcWUzDFxIOWFN6GEC5_zEF8ec-kTHH5ce7O-32EXLKJCson3t9jnti5R3HXWqGILPcpVDyUyGqV1OzZqcEWsNaim1p_3aKPyEaWgbLFFSh9GA0pMY_QerbuhbutfNdROXBmLUtP8OBEatoC-_Ndau4UtSjul9aG9sQDozZq8gfbGu6pU08PsjFPv_elxkyz81fp5mcQrv2CUD74gQcRoLqUoZRGKgNKQhWHJKqASqhJjUSkZVTkARKUAXHBGJXGvEhzwkgds6t2d9rp3v0foh2xnRqvdyYwKzgmJIhI5VnBiFdb0vYUq62zdKrvPCM6Ormcn17OD69nZdfYPR791ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655119919</pqid></control><display><type>article</type><title>Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Addou, El Houcine ; Serghini, Abelhafid ; Bekkaye, El</creator><creatorcontrib>Addou, El Houcine ; Serghini, Abelhafid ; Bekkaye, El</creatorcontrib><description>In graph theory, the k-minimum spanning tree problem is considered to be one of the well-known NP hard problems to solve. This paper address this problem by proposing several hybrid approximate approaches based on the combination of simulated annealing, tabu search and ant colony optimization algorithms. The performances of the proposed methods are compared to other approaches from the literature using the same well-known library of benchmark instances.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2021.0120288</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Algorithms ; Ant colony optimization ; Computer science ; Experiments ; Graph theory ; Methods ; Neighborhoods ; Optimization algorithms ; Simulated annealing ; Tabu search ; Trees</subject><ispartof>International journal of advanced computer science & applications, 2021, Vol.12 (2)</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-614932b886d8c764227377d3fe28efd006fa89fbeee9d6e0c532812681045d543</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Addou, El Houcine</creatorcontrib><creatorcontrib>Serghini, Abelhafid</creatorcontrib><creatorcontrib>Bekkaye, El</creatorcontrib><title>Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem</title><title>International journal of advanced computer science & applications</title><description>In graph theory, the k-minimum spanning tree problem is considered to be one of the well-known NP hard problems to solve. This paper address this problem by proposing several hybrid approximate approaches based on the combination of simulated annealing, tabu search and ant colony optimization algorithms. The performances of the proposed methods are compared to other approaches from the literature using the same well-known library of benchmark instances.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Computer science</subject><subject>Experiments</subject><subject>Graph theory</subject><subject>Methods</subject><subject>Neighborhoods</subject><subject>Optimization algorithms</subject><subject>Simulated annealing</subject><subject>Tabu search</subject><subject>Trees</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotUNtOg0AQJUYTm9o_8GETX6XuhV2WR0LU1tTUhJr4RhYYLBV2cQGT-gP-ttvLvJy5nDOTOZ53S_CcBFxED8uXOEnjOcWUzDFxIOWFN6GEC5_zEF8ec-kTHH5ce7O-32EXLKJCson3t9jnti5R3HXWqGILPcpVDyUyGqV1OzZqcEWsNaim1p_3aKPyEaWgbLFFSh9GA0pMY_QerbuhbutfNdROXBmLUtP8OBEatoC-_Ndau4UtSjul9aG9sQDozZq8gfbGu6pU08PsjFPv_elxkyz81fp5mcQrv2CUD74gQcRoLqUoZRGKgNKQhWHJKqASqhJjUSkZVTkARKUAXHBGJXGvEhzwkgds6t2d9rp3v0foh2xnRqvdyYwKzgmJIhI5VnBiFdb0vYUq62zdKrvPCM6Ormcn17OD69nZdfYPR791ng</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Addou, El Houcine</creator><creator>Serghini, Abelhafid</creator><creator>Bekkaye, El</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2021</creationdate><title>Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem</title><author>Addou, El Houcine ; Serghini, Abelhafid ; Bekkaye, El</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-614932b886d8c764227377d3fe28efd006fa89fbeee9d6e0c532812681045d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Computer science</topic><topic>Experiments</topic><topic>Graph theory</topic><topic>Methods</topic><topic>Neighborhoods</topic><topic>Optimization algorithms</topic><topic>Simulated annealing</topic><topic>Tabu search</topic><topic>Trees</topic><toplevel>online_resources</toplevel><creatorcontrib>Addou, El Houcine</creatorcontrib><creatorcontrib>Serghini, Abelhafid</creatorcontrib><creatorcontrib>Bekkaye, El</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Addou, El Houcine</au><au>Serghini, Abelhafid</au><au>Bekkaye, El</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2021</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>In graph theory, the k-minimum spanning tree problem is considered to be one of the well-known NP hard problems to solve. This paper address this problem by proposing several hybrid approximate approaches based on the combination of simulated annealing, tabu search and ant colony optimization algorithms. The performances of the proposed methods are compared to other approaches from the literature using the same well-known library of benchmark instances.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2021.0120288</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2021, Vol.12 (2) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2655119919 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Ant colony optimization Computer science Experiments Graph theory Methods Neighborhoods Optimization algorithms Simulated annealing Tabu search Trees |
title | Hybrid Approaches based on Simulated Annealing, Tabu Search and Ant Colony Optimization for Solving the k-Minimum Spanning Tree Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Approaches%20based%20on%20Simulated%20Annealing,%20Tabu%20Search%20and%20Ant%20Colony%20Optimization%20for%20Solving%20the%20k-Minimum%20Spanning%20Tree%20Problem&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Addou,%20El%20Houcine&rft.date=2021&rft.volume=12&rft.issue=2&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2021.0120288&rft_dat=%3Cproquest_cross%3E2655119919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655119919&rft_id=info:pmid/&rfr_iscdi=true |