Artificial Intelligence based Recommendation System for Analyzing Social Bussiness Reviews
Recently, analysing reviews presented by clients to products that are provided by e-commerce companies, such as Amazon, to produce efficient recommendations has been receiving a lot of attention. However, ensuring and generating effective recommendations on time is a challenge. This research paper p...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2021, Vol.12 (6) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 12 |
creator | Alanazi, Asma Alseid, Marwan |
description | Recently, analysing reviews presented by clients to products that are provided by e-commerce companies, such as Amazon, to produce efficient recommendations has been receiving a lot of attention. However, ensuring and generating effective recommendations on time is a challenge. This research paper proposes an artificial intelligence-based system. The proposed system uses the Incremental Learning - based Method (ILbM) to learn a neural network classifier. The ILbM uses the bagging technique in the process of training the classifier. To ensure a high degree of performance, the ILbM is implemented on the Hadoop since it allows the execution in parallel. Compared to a similar system, the proposed system shows better results in terms of accuracy (97.5%), precision (95.7%), recall (91.5%), and time of response (36 seconds). |
doi_str_mv | 10.14569/IJACSA.2021.0120614 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655118529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655118529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-855260f4aa63ba3cb70c0c801653c40b6d06c45bc30c37c29feb45da938d81123</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRsNT-AxcB16l3npksY_FRKQhWQdwMk8mkTEkmdSZR6q83tr2bcxfnHA4fQtcY5phxkd8un4vFupgTIHgOmIDA7AxNCOYi5TyD88MvUwzZxyWaxbiF8WhOhKQT9FmE3tXOON0kS9_bpnEb641NSh1tlbxa07Wt9ZXuXeeT9T72tk3qLiSF183-1_lNsu4O6bshRudtjGPo29mfeIUuat1EOzvpFL0_3L8tntLVy-NyUaxSQzLWp5JzIqBmWgtaamrKDAwYCVhwahiUogJhGC8NBUMzQ_LaloxXOqeykhgTOkU3x95d6L4GG3u17YYwzouKCM4xlpzko4sdXSZ0MQZbq11wrQ57hUEdQKojSPUPUp1A0j9Hsma3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655118529</pqid></control><display><type>article</type><title>Artificial Intelligence based Recommendation System for Analyzing Social Bussiness Reviews</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alanazi, Asma ; Alseid, Marwan</creator><creatorcontrib>Alanazi, Asma ; Alseid, Marwan</creatorcontrib><description>Recently, analysing reviews presented by clients to products that are provided by e-commerce companies, such as Amazon, to produce efficient recommendations has been receiving a lot of attention. However, ensuring and generating effective recommendations on time is a challenge. This research paper proposes an artificial intelligence-based system. The proposed system uses the Incremental Learning - based Method (ILbM) to learn a neural network classifier. The ILbM uses the bagging technique in the process of training the classifier. To ensure a high degree of performance, the ILbM is implemented on the Hadoop since it allows the execution in parallel. Compared to a similar system, the proposed system shows better results in terms of accuracy (97.5%), precision (95.7%), recall (91.5%), and time of response (36 seconds).</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2021.0120614</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Artificial intelligence ; Classifiers ; Neural networks ; Recommender systems</subject><ispartof>International journal of advanced computer science & applications, 2021, Vol.12 (6)</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Alanazi, Asma</creatorcontrib><creatorcontrib>Alseid, Marwan</creatorcontrib><title>Artificial Intelligence based Recommendation System for Analyzing Social Bussiness Reviews</title><title>International journal of advanced computer science & applications</title><description>Recently, analysing reviews presented by clients to products that are provided by e-commerce companies, such as Amazon, to produce efficient recommendations has been receiving a lot of attention. However, ensuring and generating effective recommendations on time is a challenge. This research paper proposes an artificial intelligence-based system. The proposed system uses the Incremental Learning - based Method (ILbM) to learn a neural network classifier. The ILbM uses the bagging technique in the process of training the classifier. To ensure a high degree of performance, the ILbM is implemented on the Hadoop since it allows the execution in parallel. Compared to a similar system, the proposed system shows better results in terms of accuracy (97.5%), precision (95.7%), recall (91.5%), and time of response (36 seconds).</description><subject>Artificial intelligence</subject><subject>Classifiers</subject><subject>Neural networks</subject><subject>Recommender systems</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEtLw0AUhQdRsNT-AxcB16l3npksY_FRKQhWQdwMk8mkTEkmdSZR6q83tr2bcxfnHA4fQtcY5phxkd8un4vFupgTIHgOmIDA7AxNCOYi5TyD88MvUwzZxyWaxbiF8WhOhKQT9FmE3tXOON0kS9_bpnEb641NSh1tlbxa07Wt9ZXuXeeT9T72tk3qLiSF183-1_lNsu4O6bshRudtjGPo29mfeIUuat1EOzvpFL0_3L8tntLVy-NyUaxSQzLWp5JzIqBmWgtaamrKDAwYCVhwahiUogJhGC8NBUMzQ_LaloxXOqeykhgTOkU3x95d6L4GG3u17YYwzouKCM4xlpzko4sdXSZ0MQZbq11wrQ57hUEdQKojSPUPUp1A0j9Hsma3</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Alanazi, Asma</creator><creator>Alseid, Marwan</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2021</creationdate><title>Artificial Intelligence based Recommendation System for Analyzing Social Bussiness Reviews</title><author>Alanazi, Asma ; Alseid, Marwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-855260f4aa63ba3cb70c0c801653c40b6d06c45bc30c37c29feb45da938d81123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Classifiers</topic><topic>Neural networks</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Alanazi, Asma</creatorcontrib><creatorcontrib>Alseid, Marwan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alanazi, Asma</au><au>Alseid, Marwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence based Recommendation System for Analyzing Social Bussiness Reviews</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2021</date><risdate>2021</risdate><volume>12</volume><issue>6</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Recently, analysing reviews presented by clients to products that are provided by e-commerce companies, such as Amazon, to produce efficient recommendations has been receiving a lot of attention. However, ensuring and generating effective recommendations on time is a challenge. This research paper proposes an artificial intelligence-based system. The proposed system uses the Incremental Learning - based Method (ILbM) to learn a neural network classifier. The ILbM uses the bagging technique in the process of training the classifier. To ensure a high degree of performance, the ILbM is implemented on the Hadoop since it allows the execution in parallel. Compared to a similar system, the proposed system shows better results in terms of accuracy (97.5%), precision (95.7%), recall (91.5%), and time of response (36 seconds).</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2021.0120614</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2021, Vol.12 (6) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2655118529 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Artificial intelligence Classifiers Neural networks Recommender systems |
title | Artificial Intelligence based Recommendation System for Analyzing Social Bussiness Reviews |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20based%20Recommendation%20System%20for%20Analyzing%20Social%20Bussiness%20Reviews&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Alanazi,%20Asma&rft.date=2021&rft.volume=12&rft.issue=6&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2021.0120614&rft_dat=%3Cproquest_cross%3E2655118529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655118529&rft_id=info:pmid/&rfr_iscdi=true |