Mobile Computational Vision System in the Identification of White Quinoa Quality
Quinoa is currently in high commercial demand due to its large benefits and vitamin components. The process of selecting this grain is mostly done manually, being prone to errors, because many times this work is subject to fatigue and to subjective criteria of those in charge, causing the quality to...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2021, Vol.12 (8) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 12 |
creator | Lecca-Pino, Percimil Tafur-Vera, Daniel Cabanillas-Carbonell, Michael Salazar, José Luis Herrera Medina-Rafaile, Esteban |
description | Quinoa is currently in high commercial demand due to its large benefits and vitamin components. The process of selecting this grain is mostly done manually, being prone to errors, because many times this work is subject to fatigue and to subjective criteria of those in charge, causing the quality to decrease due to not making an adequate selection subject to standards. For this reason, a study focused on determining the influence of the computer vision system for the identification of the quality of white quinoa, based on the standards and techniques for the development of a computer vision system through the phases of PDI. Managing to determine the influence of this, concluding that it is possible to ensure the implementation of robust systems to solve problems by applying computer vision thanks to technological advances for mobile devices. |
doi_str_mv | 10.14569/IJACSA.2021.0120850 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655113616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655113616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-4eb7552661982d47953418523f86ef1088487812461c9f5e5c8983d58e6877bb3</originalsourceid><addsrcrecordid>eNotkMtuwjAQRa2qlYoof9CFpa5DPXbGcZYo6oOKqq3oa2clwRZGIaaxs-DvSYHZ3Ls4uhodQm6BTSFFmd_PX2bFcjbljMOUAWcK2QUZcUCZIGbs8thVAiz7vSaTEDZsOJFzqcSIvL_6yjWGFn6762MZnW_Lhn67MBS63IdottS1NK4Nna9MG5119ZGi3tKftYuGfvSu9eUQZePi_oZc2bIJZnLOMfl6fPgsnpPF29O8mC2SWnCMSWqqDJFLCbniqzTLUaSgkAurpLHAlEpVpoCnEurcosFa5UqsUBmpsqyqxJjcnXZ3nf_rTYh64_tueD5oLhEBhAQ5UOmJqjsfQmes3nVuW3Z7DUwf9emTPv2vT5_1iQN1hmEh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655113616</pqid></control><display><type>article</type><title>Mobile Computational Vision System in the Identification of White Quinoa Quality</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lecca-Pino, Percimil ; Tafur-Vera, Daniel ; Cabanillas-Carbonell, Michael ; Salazar, José Luis Herrera ; Medina-Rafaile, Esteban</creator><creatorcontrib>Lecca-Pino, Percimil ; Tafur-Vera, Daniel ; Cabanillas-Carbonell, Michael ; Salazar, José Luis Herrera ; Medina-Rafaile, Esteban</creatorcontrib><description>Quinoa is currently in high commercial demand due to its large benefits and vitamin components. The process of selecting this grain is mostly done manually, being prone to errors, because many times this work is subject to fatigue and to subjective criteria of those in charge, causing the quality to decrease due to not making an adequate selection subject to standards. For this reason, a study focused on determining the influence of the computer vision system for the identification of the quality of white quinoa, based on the standards and techniques for the development of a computer vision system through the phases of PDI. Managing to determine the influence of this, concluding that it is possible to ensure the implementation of robust systems to solve problems by applying computer vision thanks to technological advances for mobile devices.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2021.0120850</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Computer vision ; Electronic devices ; Mobile computing ; Quinoa ; Vision systems</subject><ispartof>International journal of advanced computer science & applications, 2021, Vol.12 (8)</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-4eb7552661982d47953418523f86ef1088487812461c9f5e5c8983d58e6877bb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>Lecca-Pino, Percimil</creatorcontrib><creatorcontrib>Tafur-Vera, Daniel</creatorcontrib><creatorcontrib>Cabanillas-Carbonell, Michael</creatorcontrib><creatorcontrib>Salazar, José Luis Herrera</creatorcontrib><creatorcontrib>Medina-Rafaile, Esteban</creatorcontrib><title>Mobile Computational Vision System in the Identification of White Quinoa Quality</title><title>International journal of advanced computer science & applications</title><description>Quinoa is currently in high commercial demand due to its large benefits and vitamin components. The process of selecting this grain is mostly done manually, being prone to errors, because many times this work is subject to fatigue and to subjective criteria of those in charge, causing the quality to decrease due to not making an adequate selection subject to standards. For this reason, a study focused on determining the influence of the computer vision system for the identification of the quality of white quinoa, based on the standards and techniques for the development of a computer vision system through the phases of PDI. Managing to determine the influence of this, concluding that it is possible to ensure the implementation of robust systems to solve problems by applying computer vision thanks to technological advances for mobile devices.</description><subject>Computer vision</subject><subject>Electronic devices</subject><subject>Mobile computing</subject><subject>Quinoa</subject><subject>Vision systems</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMtuwjAQRa2qlYoof9CFpa5DPXbGcZYo6oOKqq3oa2clwRZGIaaxs-DvSYHZ3Ls4uhodQm6BTSFFmd_PX2bFcjbljMOUAWcK2QUZcUCZIGbs8thVAiz7vSaTEDZsOJFzqcSIvL_6yjWGFn6762MZnW_Lhn67MBS63IdottS1NK4Nna9MG5119ZGi3tKftYuGfvSu9eUQZePi_oZc2bIJZnLOMfl6fPgsnpPF29O8mC2SWnCMSWqqDJFLCbniqzTLUaSgkAurpLHAlEpVpoCnEurcosFa5UqsUBmpsqyqxJjcnXZ3nf_rTYh64_tueD5oLhEBhAQ5UOmJqjsfQmes3nVuW3Z7DUwf9emTPv2vT5_1iQN1hmEh</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lecca-Pino, Percimil</creator><creator>Tafur-Vera, Daniel</creator><creator>Cabanillas-Carbonell, Michael</creator><creator>Salazar, José Luis Herrera</creator><creator>Medina-Rafaile, Esteban</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2021</creationdate><title>Mobile Computational Vision System in the Identification of White Quinoa Quality</title><author>Lecca-Pino, Percimil ; Tafur-Vera, Daniel ; Cabanillas-Carbonell, Michael ; Salazar, José Luis Herrera ; Medina-Rafaile, Esteban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-4eb7552661982d47953418523f86ef1088487812461c9f5e5c8983d58e6877bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer vision</topic><topic>Electronic devices</topic><topic>Mobile computing</topic><topic>Quinoa</topic><topic>Vision systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Lecca-Pino, Percimil</creatorcontrib><creatorcontrib>Tafur-Vera, Daniel</creatorcontrib><creatorcontrib>Cabanillas-Carbonell, Michael</creatorcontrib><creatorcontrib>Salazar, José Luis Herrera</creatorcontrib><creatorcontrib>Medina-Rafaile, Esteban</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lecca-Pino, Percimil</au><au>Tafur-Vera, Daniel</au><au>Cabanillas-Carbonell, Michael</au><au>Salazar, José Luis Herrera</au><au>Medina-Rafaile, Esteban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile Computational Vision System in the Identification of White Quinoa Quality</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2021</date><risdate>2021</risdate><volume>12</volume><issue>8</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Quinoa is currently in high commercial demand due to its large benefits and vitamin components. The process of selecting this grain is mostly done manually, being prone to errors, because many times this work is subject to fatigue and to subjective criteria of those in charge, causing the quality to decrease due to not making an adequate selection subject to standards. For this reason, a study focused on determining the influence of the computer vision system for the identification of the quality of white quinoa, based on the standards and techniques for the development of a computer vision system through the phases of PDI. Managing to determine the influence of this, concluding that it is possible to ensure the implementation of robust systems to solve problems by applying computer vision thanks to technological advances for mobile devices.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2021.0120850</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2021, Vol.12 (8) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2655113616 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computer vision Electronic devices Mobile computing Quinoa Vision systems |
title | Mobile Computational Vision System in the Identification of White Quinoa Quality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile%20Computational%20Vision%20System%20in%20the%20Identification%20of%20White%20Quinoa%20Quality&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Lecca-Pino,%20Percimil&rft.date=2021&rft.volume=12&rft.issue=8&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2021.0120850&rft_dat=%3Cproquest_cross%3E2655113616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655113616&rft_id=info:pmid/&rfr_iscdi=true |