Binocular Vision Navigation Method of Marine Garbage Cleaning Robot in Unknown Dynamic Scene

Zhang, C., 2020. Binocular vision navigation method of marine garbage cleaning robot in unknown dynamic scene. In: Yang, Y.; Mi, C.; Zhao, L., and Lam, S. (eds.), Global Topics and New Trends in Coastal Research: Port, Coastal and Ocean Engineering. Journal of Coastal Research, Special Issue No. 103...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of coastal research 2020-06, Vol.103 (sp1), p.864-867
1. Verfasser: Zhang, Chan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 867
container_issue sp1
container_start_page 864
container_title Journal of coastal research
container_volume 103
creator Zhang, Chan
description Zhang, C., 2020. Binocular vision navigation method of marine garbage cleaning robot in unknown dynamic scene. In: Yang, Y.; Mi, C.; Zhao, L., and Lam, S. (eds.), Global Topics and New Trends in Coastal Research: Port, Coastal and Ocean Engineering. Journal of Coastal Research, Special Issue No. 103, pp. 864–867. Coconut Creek (Florida), ISSN 0749-0208. When the current method was adopted for the vision navigation of marine garbage cleaning robot, the results of target garbage location were quite different from actual results, and the time of controlling the robot to the target location was too long, resulting in low positioning accuracy and poor path planning effect. Therefore, a method of binocular vision navigation of marine garbage cleaning robot in unknown dynamic scene was put forward. The camera was calibrated to extract the feature points in target image. Moreover, the moving path of robot was planned by dynamic obstacle avoidance algorithm based on escape velocity. In the unknown dynamic scene, the navigation of marine garbage cleaning robot was realized. Experimental results show that the proposed method has high positioning accuracy and good path planning effect.
doi_str_mv 10.2112/SI103-179.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2654999493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48639871</jstor_id><sourcerecordid>48639871</sourcerecordid><originalsourceid>FETCH-LOGICAL-b317t-9bc9d294ff304c169b16a832890f82324bf47a54b9aff079f441d30b23f59f203</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsr10LAlcjUfM1MstSqtdAqWOtKCMk0qak1qclU6b936ohLV-_CPdwHB4BjjHoEY3IxGWJEM1yKHt4BHZznOMsRLXZBB5VMZIggvg8OUloghAvOyg54uXI-VOulivDZJRc8vFefbq7qbRyb-jXMYLBwrKLzBg5U1GpuYH9plHd-Dh-DDjV0Hk79mw9fHl5vvHp3FZxUxptDsGfVMpmj39sF09ubp_5dNnoYDPuXo0xTXNaZ0JWYEcGspYhVuBAaF4pTwgWynFDCtGWlypkWylpUCssYnlGkCbW5sATRLjhtd1cxfKxNquUirKNvXkpS5EwIwQRtqPOWqmJIKRorV9G9q7iRGMmtPvmjTzb6JG7ok5ZepDrEP5TxggpebvuzttcuBG_-3foG0Ax3gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654999493</pqid></control><display><type>article</type><title>Binocular Vision Navigation Method of Marine Garbage Cleaning Robot in Unknown Dynamic Scene</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Zhang, Chan</creator><creatorcontrib>Zhang, Chan</creatorcontrib><description>Zhang, C., 2020. Binocular vision navigation method of marine garbage cleaning robot in unknown dynamic scene. In: Yang, Y.; Mi, C.; Zhao, L., and Lam, S. (eds.), Global Topics and New Trends in Coastal Research: Port, Coastal and Ocean Engineering. Journal of Coastal Research, Special Issue No. 103, pp. 864–867. Coconut Creek (Florida), ISSN 0749-0208. When the current method was adopted for the vision navigation of marine garbage cleaning robot, the results of target garbage location were quite different from actual results, and the time of controlling the robot to the target location was too long, resulting in low positioning accuracy and poor path planning effect. Therefore, a method of binocular vision navigation of marine garbage cleaning robot in unknown dynamic scene was put forward. The camera was calibrated to extract the feature points in target image. Moreover, the moving path of robot was planned by dynamic obstacle avoidance algorithm based on escape velocity. In the unknown dynamic scene, the navigation of marine garbage cleaning robot was realized. Experimental results show that the proposed method has high positioning accuracy and good path planning effect.</description><identifier>ISSN: 0749-0208</identifier><identifier>EISSN: 1551-5036</identifier><identifier>DOI: 10.2112/SI103-179.1</identifier><language>eng</language><publisher>Fort Lauderdale: Coastal Education and Research Foundation</publisher><subject>Accuracy ; Algorithms ; Binocular vision ; Cleaning ; Coastal engineering ; Coastal inlets ; Coastal research ; Coasts ; Escape velocity ; Feature extraction ; Garbage ; garbage cleaning robot ; Litter ; Marine debris ; Marine garbage ; Methods ; Navigation ; Obstacle avoidance ; Ocean engineering ; OCEAN INFORMATION SCIENCE ; Offshore engineering ; Path planning ; Refuse ; robot navigation method ; Robots</subject><ispartof>Journal of coastal research, 2020-06, Vol.103 (sp1), p.864-867</ispartof><rights>Coastal Education and Research Foundation, Inc. 2020</rights><rights>Copyright Allen Press Inc. Summer 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b317t-9bc9d294ff304c169b16a832890f82324bf47a54b9aff079f441d30b23f59f203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48639871$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48639871$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Zhang, Chan</creatorcontrib><title>Binocular Vision Navigation Method of Marine Garbage Cleaning Robot in Unknown Dynamic Scene</title><title>Journal of coastal research</title><description>Zhang, C., 2020. Binocular vision navigation method of marine garbage cleaning robot in unknown dynamic scene. In: Yang, Y.; Mi, C.; Zhao, L., and Lam, S. (eds.), Global Topics and New Trends in Coastal Research: Port, Coastal and Ocean Engineering. Journal of Coastal Research, Special Issue No. 103, pp. 864–867. Coconut Creek (Florida), ISSN 0749-0208. When the current method was adopted for the vision navigation of marine garbage cleaning robot, the results of target garbage location were quite different from actual results, and the time of controlling the robot to the target location was too long, resulting in low positioning accuracy and poor path planning effect. Therefore, a method of binocular vision navigation of marine garbage cleaning robot in unknown dynamic scene was put forward. The camera was calibrated to extract the feature points in target image. Moreover, the moving path of robot was planned by dynamic obstacle avoidance algorithm based on escape velocity. In the unknown dynamic scene, the navigation of marine garbage cleaning robot was realized. Experimental results show that the proposed method has high positioning accuracy and good path planning effect.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Binocular vision</subject><subject>Cleaning</subject><subject>Coastal engineering</subject><subject>Coastal inlets</subject><subject>Coastal research</subject><subject>Coasts</subject><subject>Escape velocity</subject><subject>Feature extraction</subject><subject>Garbage</subject><subject>garbage cleaning robot</subject><subject>Litter</subject><subject>Marine debris</subject><subject>Marine garbage</subject><subject>Methods</subject><subject>Navigation</subject><subject>Obstacle avoidance</subject><subject>Ocean engineering</subject><subject>OCEAN INFORMATION SCIENCE</subject><subject>Offshore engineering</subject><subject>Path planning</subject><subject>Refuse</subject><subject>robot navigation method</subject><subject>Robots</subject><issn>0749-0208</issn><issn>1551-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEURYMoWKsr10LAlcjUfM1MstSqtdAqWOtKCMk0qak1qclU6b936ohLV-_CPdwHB4BjjHoEY3IxGWJEM1yKHt4BHZznOMsRLXZBB5VMZIggvg8OUloghAvOyg54uXI-VOulivDZJRc8vFefbq7qbRyb-jXMYLBwrKLzBg5U1GpuYH9plHd-Dh-DDjV0Hk79mw9fHl5vvHp3FZxUxptDsGfVMpmj39sF09ubp_5dNnoYDPuXo0xTXNaZ0JWYEcGspYhVuBAaF4pTwgWynFDCtGWlypkWylpUCssYnlGkCbW5sATRLjhtd1cxfKxNquUirKNvXkpS5EwIwQRtqPOWqmJIKRorV9G9q7iRGMmtPvmjTzb6JG7ok5ZepDrEP5TxggpebvuzttcuBG_-3foG0Ax3gQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zhang, Chan</creator><general>Coastal Education and Research Foundation</general><general>Allen Press Publishing</general><general>Allen Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TN</scope><scope>7U5</scope><scope>7U9</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20200601</creationdate><title>Binocular Vision Navigation Method of Marine Garbage Cleaning Robot in Unknown Dynamic Scene</title><author>Zhang, Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b317t-9bc9d294ff304c169b16a832890f82324bf47a54b9aff079f441d30b23f59f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Binocular vision</topic><topic>Cleaning</topic><topic>Coastal engineering</topic><topic>Coastal inlets</topic><topic>Coastal research</topic><topic>Coasts</topic><topic>Escape velocity</topic><topic>Feature extraction</topic><topic>Garbage</topic><topic>garbage cleaning robot</topic><topic>Litter</topic><topic>Marine debris</topic><topic>Marine garbage</topic><topic>Methods</topic><topic>Navigation</topic><topic>Obstacle avoidance</topic><topic>Ocean engineering</topic><topic>OCEAN INFORMATION SCIENCE</topic><topic>Offshore engineering</topic><topic>Path planning</topic><topic>Refuse</topic><topic>robot navigation method</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of coastal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binocular Vision Navigation Method of Marine Garbage Cleaning Robot in Unknown Dynamic Scene</atitle><jtitle>Journal of coastal research</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>103</volume><issue>sp1</issue><spage>864</spage><epage>867</epage><pages>864-867</pages><issn>0749-0208</issn><eissn>1551-5036</eissn><abstract>Zhang, C., 2020. Binocular vision navigation method of marine garbage cleaning robot in unknown dynamic scene. In: Yang, Y.; Mi, C.; Zhao, L., and Lam, S. (eds.), Global Topics and New Trends in Coastal Research: Port, Coastal and Ocean Engineering. Journal of Coastal Research, Special Issue No. 103, pp. 864–867. Coconut Creek (Florida), ISSN 0749-0208. When the current method was adopted for the vision navigation of marine garbage cleaning robot, the results of target garbage location were quite different from actual results, and the time of controlling the robot to the target location was too long, resulting in low positioning accuracy and poor path planning effect. Therefore, a method of binocular vision navigation of marine garbage cleaning robot in unknown dynamic scene was put forward. The camera was calibrated to extract the feature points in target image. Moreover, the moving path of robot was planned by dynamic obstacle avoidance algorithm based on escape velocity. In the unknown dynamic scene, the navigation of marine garbage cleaning robot was realized. Experimental results show that the proposed method has high positioning accuracy and good path planning effect.</abstract><cop>Fort Lauderdale</cop><pub>Coastal Education and Research Foundation</pub><doi>10.2112/SI103-179.1</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-0208
ispartof Journal of coastal research, 2020-06, Vol.103 (sp1), p.864-867
issn 0749-0208
1551-5036
language eng
recordid cdi_proquest_journals_2654999493
source JSTOR Archive Collection A-Z Listing
subjects Accuracy
Algorithms
Binocular vision
Cleaning
Coastal engineering
Coastal inlets
Coastal research
Coasts
Escape velocity
Feature extraction
Garbage
garbage cleaning robot
Litter
Marine debris
Marine garbage
Methods
Navigation
Obstacle avoidance
Ocean engineering
OCEAN INFORMATION SCIENCE
Offshore engineering
Path planning
Refuse
robot navigation method
Robots
title Binocular Vision Navigation Method of Marine Garbage Cleaning Robot in Unknown Dynamic Scene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binocular%20Vision%20Navigation%20Method%20of%20Marine%20Garbage%20Cleaning%20Robot%20in%20Unknown%20Dynamic%20Scene&rft.jtitle=Journal%20of%20coastal%20research&rft.au=Zhang,%20Chan&rft.date=2020-06-01&rft.volume=103&rft.issue=sp1&rft.spage=864&rft.epage=867&rft.pages=864-867&rft.issn=0749-0208&rft.eissn=1551-5036&rft_id=info:doi/10.2112/SI103-179.1&rft_dat=%3Cjstor_proqu%3E48639871%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654999493&rft_id=info:pmid/&rft_jstor_id=48639871&rfr_iscdi=true