A New Formula for the Transport Capacity of Nonuniform Suspended Sediment in Estuaries
Sun, Z.-l.; Gao, Y.; Xu, D.; Hu, C.-h.; Fang, H.-w., and Xu, Y.-p., 2019. A new formula for the transport capacity of nonuniform suspended sediment in estuaries. Journal of Coastal Research, 35(3), 684–692. Coconut Creek (Florida), ISSN 0749-0208. A new formula for calculating the sediment transport...
Gespeichert in:
Veröffentlicht in: | Journal of coastal research 2019-05, Vol.35 (3), p.684-692 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 692 |
---|---|
container_issue | 3 |
container_start_page | 684 |
container_title | Journal of coastal research |
container_volume | 35 |
creator | Sun, Zhi-lin Gao, Yun Xu, Dan Hu, Chun-hong Fang, Hong-wei Xux, Yue-ping |
description | Sun, Z.-l.; Gao, Y.; Xu, D.; Hu, C.-h.; Fang, H.-w., and Xu, Y.-p., 2019. A new formula for the transport capacity of nonuniform suspended sediment in estuaries. Journal of Coastal Research, 35(3), 684–692. Coconut Creek (Florida), ISSN 0749-0208. A new formula for calculating the sediment transport capacity is developed as a function of the time-dependent Froude number and the particle Reynolds number. Considering the relation between suspension and transport of sediment, a critical condition for suspension is introduced into the formula. The proposed formula provides a consistent formulation for the fractional and total transport capacity of nonuniform sediments and leads to an expression for the mean fall velocity that makes physical sense. The coefficients in the proposed formula were determined with laboratory data of uniform sediment, and it is verified by field data measured from alluvial rivers. The concept of instantaneous equilibrium was proposed so that applicability of the formula extended to estuaries. The results show that the present formula performs well in conditions of laboratories, rivers, and estuaries. This can provide a key parameter or bottom boundary condition for two-dimensional/three-dimensional mathematical models of nonuniform sediment. |
doi_str_mv | 10.2112/JCOASTRES-D-18-00042.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2654994426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26626098</jstor_id><sourcerecordid>26626098</sourcerecordid><originalsourceid>FETCH-LOGICAL-b378t-3fde018bdb695cdaa04fbffb639434e3b5e29a694c81a4903ff23c5c815722643</originalsourceid><addsrcrecordid>eNqNkN1LwzAUxYMoOKd_ghLwuTPfTR7HPvxgbOCmryFtE-xYm5q0yP57Oyd7FO_L5XLO-V04ANxhNCIYk4eXyWq83rzO1sk0wTJBCDEywmdggDnHCUdUnIMBSplKEEHyElzFuEUIC8nSAXgfw6X9gnMfqm5noPMBth8WboKpY-NDCyemMXnZ7qF3cOnrri57TwXXXWxsXdgCrm1RVrZuYVnDWWw7E0obr8GFM7tob373ELzNZ5vJU7JYPT5Pxosko6lsE-oKi7DMikwonhfGIOYy5zJBFaPM0oxbooxQLJfYMIWoc4TmvL94SohgdAjuj9wm-M_OxlZvfRfq_qUmgjOlGCPiT1c_UnLJDixxdOXBxxis000oKxP2GiN9aFqfmtZTjaX-aVrjPnh7DG5j68MpRYQgAinZ6-yoZ6X3tf0v9hsKSouF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222885844</pqid></control><display><type>article</type><title>A New Formula for the Transport Capacity of Nonuniform Suspended Sediment in Estuaries</title><source>Jstor Complete Legacy</source><creator>Sun, Zhi-lin ; Gao, Yun ; Xu, Dan ; Hu, Chun-hong ; Fang, Hong-wei ; Xux, Yue-ping</creator><creatorcontrib>Sun, Zhi-lin ; Gao, Yun ; Xu, Dan ; Hu, Chun-hong ; Fang, Hong-wei ; Xux, Yue-ping</creatorcontrib><description>Sun, Z.-l.; Gao, Y.; Xu, D.; Hu, C.-h.; Fang, H.-w., and Xu, Y.-p., 2019. A new formula for the transport capacity of nonuniform suspended sediment in estuaries. Journal of Coastal Research, 35(3), 684–692. Coconut Creek (Florida), ISSN 0749-0208. A new formula for calculating the sediment transport capacity is developed as a function of the time-dependent Froude number and the particle Reynolds number. Considering the relation between suspension and transport of sediment, a critical condition for suspension is introduced into the formula. The proposed formula provides a consistent formulation for the fractional and total transport capacity of nonuniform sediments and leads to an expression for the mean fall velocity that makes physical sense. The coefficients in the proposed formula were determined with laboratory data of uniform sediment, and it is verified by field data measured from alluvial rivers. The concept of instantaneous equilibrium was proposed so that applicability of the formula extended to estuaries. The results show that the present formula performs well in conditions of laboratories, rivers, and estuaries. This can provide a key parameter or bottom boundary condition for two-dimensional/three-dimensional mathematical models of nonuniform sediment.</description><identifier>ISSN: 0749-0208</identifier><identifier>EISSN: 1551-5036</identifier><identifier>DOI: 10.2112/JCOASTRES-D-18-00042.1</identifier><language>eng</language><publisher>Fort Lauderdale: Coastal Education and Research Foundation</publisher><subject>Alluvial rivers ; Boundary conditions ; Capacity ; Coastal inlets ; Coastal research ; Coefficients ; Creeks & streams ; critical suspension ; Dimensional analysis ; Energy ; Estuaries ; Flow velocity ; Fluid flow ; Fractional transport capacity ; Froude number ; Hydraulic engineering ; Hydraulics ; instantaneous equilibrium ; Kinematics ; Laboratories ; Mathematical models ; Particle interactions ; Reynolds number ; Rivers ; Sediment ; Sediment transport ; Sediments ; suspended load ; Suspended sediments ; Suspended solids ; TECHNICAL COMMUNICATIONS ; Three dimensional models ; Time dependence ; Transport ; Two dimensional models ; Viscosity</subject><ispartof>Journal of coastal research, 2019-05, Vol.35 (3), p.684-692</ispartof><rights>Coastal Education and Research Foundation, Inc. 2019</rights><rights>Copyright Allen Press Publishing Services May 2019</rights><rights>Copyright Allen Press Inc. May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b378t-3fde018bdb695cdaa04fbffb639434e3b5e29a694c81a4903ff23c5c815722643</citedby><cites>FETCH-LOGICAL-b378t-3fde018bdb695cdaa04fbffb639434e3b5e29a694c81a4903ff23c5c815722643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26626098$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26626098$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,57995,58228</link.rule.ids></links><search><creatorcontrib>Sun, Zhi-lin</creatorcontrib><creatorcontrib>Gao, Yun</creatorcontrib><creatorcontrib>Xu, Dan</creatorcontrib><creatorcontrib>Hu, Chun-hong</creatorcontrib><creatorcontrib>Fang, Hong-wei</creatorcontrib><creatorcontrib>Xux, Yue-ping</creatorcontrib><title>A New Formula for the Transport Capacity of Nonuniform Suspended Sediment in Estuaries</title><title>Journal of coastal research</title><description>Sun, Z.-l.; Gao, Y.; Xu, D.; Hu, C.-h.; Fang, H.-w., and Xu, Y.-p., 2019. A new formula for the transport capacity of nonuniform suspended sediment in estuaries. Journal of Coastal Research, 35(3), 684–692. Coconut Creek (Florida), ISSN 0749-0208. A new formula for calculating the sediment transport capacity is developed as a function of the time-dependent Froude number and the particle Reynolds number. Considering the relation between suspension and transport of sediment, a critical condition for suspension is introduced into the formula. The proposed formula provides a consistent formulation for the fractional and total transport capacity of nonuniform sediments and leads to an expression for the mean fall velocity that makes physical sense. The coefficients in the proposed formula were determined with laboratory data of uniform sediment, and it is verified by field data measured from alluvial rivers. The concept of instantaneous equilibrium was proposed so that applicability of the formula extended to estuaries. The results show that the present formula performs well in conditions of laboratories, rivers, and estuaries. This can provide a key parameter or bottom boundary condition for two-dimensional/three-dimensional mathematical models of nonuniform sediment.</description><subject>Alluvial rivers</subject><subject>Boundary conditions</subject><subject>Capacity</subject><subject>Coastal inlets</subject><subject>Coastal research</subject><subject>Coefficients</subject><subject>Creeks & streams</subject><subject>critical suspension</subject><subject>Dimensional analysis</subject><subject>Energy</subject><subject>Estuaries</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fractional transport capacity</subject><subject>Froude number</subject><subject>Hydraulic engineering</subject><subject>Hydraulics</subject><subject>instantaneous equilibrium</subject><subject>Kinematics</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Particle interactions</subject><subject>Reynolds number</subject><subject>Rivers</subject><subject>Sediment</subject><subject>Sediment transport</subject><subject>Sediments</subject><subject>suspended load</subject><subject>Suspended sediments</subject><subject>Suspended solids</subject><subject>TECHNICAL COMMUNICATIONS</subject><subject>Three dimensional models</subject><subject>Time dependence</subject><subject>Transport</subject><subject>Two dimensional models</subject><subject>Viscosity</subject><issn>0749-0208</issn><issn>1551-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkN1LwzAUxYMoOKd_ghLwuTPfTR7HPvxgbOCmryFtE-xYm5q0yP57Oyd7FO_L5XLO-V04ANxhNCIYk4eXyWq83rzO1sk0wTJBCDEywmdggDnHCUdUnIMBSplKEEHyElzFuEUIC8nSAXgfw6X9gnMfqm5noPMBth8WboKpY-NDCyemMXnZ7qF3cOnrri57TwXXXWxsXdgCrm1RVrZuYVnDWWw7E0obr8GFM7tob373ELzNZ5vJU7JYPT5Pxosko6lsE-oKi7DMikwonhfGIOYy5zJBFaPM0oxbooxQLJfYMIWoc4TmvL94SohgdAjuj9wm-M_OxlZvfRfq_qUmgjOlGCPiT1c_UnLJDixxdOXBxxis000oKxP2GiN9aFqfmtZTjaX-aVrjPnh7DG5j68MpRYQgAinZ6-yoZ6X3tf0v9hsKSouF</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Sun, Zhi-lin</creator><creator>Gao, Yun</creator><creator>Xu, Dan</creator><creator>Hu, Chun-hong</creator><creator>Fang, Hong-wei</creator><creator>Xux, Yue-ping</creator><general>Coastal Education and Research Foundation</general><general>Allen Press Publishing</general><general>Allen Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TN</scope><scope>7U5</scope><scope>7U9</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20190501</creationdate><title>A New Formula for the Transport Capacity of Nonuniform Suspended Sediment in Estuaries</title><author>Sun, Zhi-lin ; Gao, Yun ; Xu, Dan ; Hu, Chun-hong ; Fang, Hong-wei ; Xux, Yue-ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b378t-3fde018bdb695cdaa04fbffb639434e3b5e29a694c81a4903ff23c5c815722643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alluvial rivers</topic><topic>Boundary conditions</topic><topic>Capacity</topic><topic>Coastal inlets</topic><topic>Coastal research</topic><topic>Coefficients</topic><topic>Creeks & streams</topic><topic>critical suspension</topic><topic>Dimensional analysis</topic><topic>Energy</topic><topic>Estuaries</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fractional transport capacity</topic><topic>Froude number</topic><topic>Hydraulic engineering</topic><topic>Hydraulics</topic><topic>instantaneous equilibrium</topic><topic>Kinematics</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Particle interactions</topic><topic>Reynolds number</topic><topic>Rivers</topic><topic>Sediment</topic><topic>Sediment transport</topic><topic>Sediments</topic><topic>suspended load</topic><topic>Suspended sediments</topic><topic>Suspended solids</topic><topic>TECHNICAL COMMUNICATIONS</topic><topic>Three dimensional models</topic><topic>Time dependence</topic><topic>Transport</topic><topic>Two dimensional models</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhi-lin</creatorcontrib><creatorcontrib>Gao, Yun</creatorcontrib><creatorcontrib>Xu, Dan</creatorcontrib><creatorcontrib>Hu, Chun-hong</creatorcontrib><creatorcontrib>Fang, Hong-wei</creatorcontrib><creatorcontrib>Xux, Yue-ping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of coastal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhi-lin</au><au>Gao, Yun</au><au>Xu, Dan</au><au>Hu, Chun-hong</au><au>Fang, Hong-wei</au><au>Xux, Yue-ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Formula for the Transport Capacity of Nonuniform Suspended Sediment in Estuaries</atitle><jtitle>Journal of coastal research</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>35</volume><issue>3</issue><spage>684</spage><epage>692</epage><pages>684-692</pages><issn>0749-0208</issn><eissn>1551-5036</eissn><abstract>Sun, Z.-l.; Gao, Y.; Xu, D.; Hu, C.-h.; Fang, H.-w., and Xu, Y.-p., 2019. A new formula for the transport capacity of nonuniform suspended sediment in estuaries. Journal of Coastal Research, 35(3), 684–692. Coconut Creek (Florida), ISSN 0749-0208. A new formula for calculating the sediment transport capacity is developed as a function of the time-dependent Froude number and the particle Reynolds number. Considering the relation between suspension and transport of sediment, a critical condition for suspension is introduced into the formula. The proposed formula provides a consistent formulation for the fractional and total transport capacity of nonuniform sediments and leads to an expression for the mean fall velocity that makes physical sense. The coefficients in the proposed formula were determined with laboratory data of uniform sediment, and it is verified by field data measured from alluvial rivers. The concept of instantaneous equilibrium was proposed so that applicability of the formula extended to estuaries. The results show that the present formula performs well in conditions of laboratories, rivers, and estuaries. This can provide a key parameter or bottom boundary condition for two-dimensional/three-dimensional mathematical models of nonuniform sediment.</abstract><cop>Fort Lauderdale</cop><pub>Coastal Education and Research Foundation</pub><doi>10.2112/JCOASTRES-D-18-00042.1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-0208 |
ispartof | Journal of coastal research, 2019-05, Vol.35 (3), p.684-692 |
issn | 0749-0208 1551-5036 |
language | eng |
recordid | cdi_proquest_journals_2654994426 |
source | Jstor Complete Legacy |
subjects | Alluvial rivers Boundary conditions Capacity Coastal inlets Coastal research Coefficients Creeks & streams critical suspension Dimensional analysis Energy Estuaries Flow velocity Fluid flow Fractional transport capacity Froude number Hydraulic engineering Hydraulics instantaneous equilibrium Kinematics Laboratories Mathematical models Particle interactions Reynolds number Rivers Sediment Sediment transport Sediments suspended load Suspended sediments Suspended solids TECHNICAL COMMUNICATIONS Three dimensional models Time dependence Transport Two dimensional models Viscosity |
title | A New Formula for the Transport Capacity of Nonuniform Suspended Sediment in Estuaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Formula%20for%20the%20Transport%20Capacity%20of%20Nonuniform%20Suspended%20Sediment%20in%20Estuaries&rft.jtitle=Journal%20of%20coastal%20research&rft.au=Sun,%20Zhi-lin&rft.date=2019-05-01&rft.volume=35&rft.issue=3&rft.spage=684&rft.epage=692&rft.pages=684-692&rft.issn=0749-0208&rft.eissn=1551-5036&rft_id=info:doi/10.2112/JCOASTRES-D-18-00042.1&rft_dat=%3Cjstor_proqu%3E26626098%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222885844&rft_id=info:pmid/&rft_jstor_id=26626098&rfr_iscdi=true |