Synthesis, characterization, thermal studies, electrochemical behavior, antimicrobial, docking studies, and computational simulation of triazole‐thiol metal complexes
In this study, we elucidate the structure and molecular properties of triazole‐thiol derivative (HL) which is confirmed via B3LYP/6‐31G(d) for DFT and HF basis set. Triazole‐thiol (HL) was conjugated with several metal ions to afford stable metal complexes. Consequently, confirmed via intensive phys...
Gespeichert in:
Veröffentlicht in: | Applied organometallic chemistry 2022-05, Vol.36 (5), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Applied organometallic chemistry |
container_volume | 36 |
creator | Fahim, Asmaa M. Magar, Hend S. Ayoub, Manara A. |
description | In this study, we elucidate the structure and molecular properties of triazole‐thiol derivative (HL) which is confirmed via B3LYP/6‐31G(d) for DFT and HF basis set. Triazole‐thiol (HL) was conjugated with several metal ions to afford stable metal complexes. Consequently, confirmed via intensive physicochemical analysis including FT‐IR spectra, elemental analysis, electronic, 1H‐NMR, TGA, and DTA. The explanation of the thermal cracking of these metal complexes has been estimated. The FT‐IR of these complexes indicated the presence of triazole‐thiol ligand (HL) as chelated coordinated through the N atom of amino group and S atom of SH moiety. Furthermore, Fe(III) complex and Ni(II) adopt octahedral stereochemistry, while the Cu(II) complex is trigonal bipyramidal, and Cd(II) complex is square planar. Thermal investigation maintained the chemical formulation of these metal complexes and exhibited that they decompose in many stages dependent on the kind of ligand and geometry of complexes. Moreover, the HL and metal complexes were exhibited antimicrobial evaluation against bacterial and fungal strains and showed higher activity comparable HL. Additionally, the theoretical docking stimulation of the ligand HL and metal complexes with different proteins showed different in energy affinity with shortage bond length with metal complexes and confirmed the experimental biological results. Eventually, the electrochemical features were explored utilizing cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). |
doi_str_mv | 10.1002/aoc.6647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2654958080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654958080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-be07052f0b41a1b7296a93ba175c45678c49a076c93db2fc4fe921287a276c8d3</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxq2qSGwLEo9giQuHTbGdxI6P1ar8kSr1QDlHE2fSuDjxYjuU7YlH4DF4Lp4E7y5STz2NZr7ffJrRR8gbzi44Y-I9eHMhZaVOyIozrQumSn1KVkzIphCS1S_JWYz3jDEtebUif77s5jRitHFNzQgBTMJgHyFZP69pVsIEjsa09BYzgg5NCt6MOFmThQ5H-GF9WFOYk82z4DsLbk17b77Z-e5pE-aeGj9tl3Tw3pvaaXGHhvqBpmDh0Tv8--t3Gq13dMKUof2Kw58YX5EXA7iIr__Xc_L1w9Xt5lNxffPx8-byujBCl6rokClWi4F1FQfeKaEl6LIDrmpT1VI1ptLAlDS67DsxmGpALbhoFIg8bPrynLw9-m6D_75gTO29X0K-N7ZC1pWuG9awTL07UvnhGAMO7TbYCcKu5azd59DmHNp9DhktjuiDdbh7lmsvbzYH_h8qlI6d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654958080</pqid></control><display><type>article</type><title>Synthesis, characterization, thermal studies, electrochemical behavior, antimicrobial, docking studies, and computational simulation of triazole‐thiol metal complexes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fahim, Asmaa M. ; Magar, Hend S. ; Ayoub, Manara A.</creator><creatorcontrib>Fahim, Asmaa M. ; Magar, Hend S. ; Ayoub, Manara A.</creatorcontrib><description>In this study, we elucidate the structure and molecular properties of triazole‐thiol derivative (HL) which is confirmed via B3LYP/6‐31G(d) for DFT and HF basis set. Triazole‐thiol (HL) was conjugated with several metal ions to afford stable metal complexes. Consequently, confirmed via intensive physicochemical analysis including FT‐IR spectra, elemental analysis, electronic, 1H‐NMR, TGA, and DTA. The explanation of the thermal cracking of these metal complexes has been estimated. The FT‐IR of these complexes indicated the presence of triazole‐thiol ligand (HL) as chelated coordinated through the N atom of amino group and S atom of SH moiety. Furthermore, Fe(III) complex and Ni(II) adopt octahedral stereochemistry, while the Cu(II) complex is trigonal bipyramidal, and Cd(II) complex is square planar. Thermal investigation maintained the chemical formulation of these metal complexes and exhibited that they decompose in many stages dependent on the kind of ligand and geometry of complexes. Moreover, the HL and metal complexes were exhibited antimicrobial evaluation against bacterial and fungal strains and showed higher activity comparable HL. Additionally, the theoretical docking stimulation of the ligand HL and metal complexes with different proteins showed different in energy affinity with shortage bond length with metal complexes and confirmed the experimental biological results. Eventually, the electrochemical features were explored utilizing cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).</description><identifier>ISSN: 0268-2605</identifier><identifier>EISSN: 1099-0739</identifier><identifier>DOI: 10.1002/aoc.6647</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Antiinfectives and antibacterials ; antimicrobial action ; Biological effects ; Cadmium compounds ; Chemical analysis ; Chemistry ; computational calculations ; Coordination compounds ; Copper ; Differential thermal analysis ; Docking ; docking studies ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; electrochemical studies ; Infrared spectroscopy ; Ligands ; metal complexes ; Metals ; Molecular structure ; Nickel ; NMR ; Nuclear magnetic resonance ; Spectrum analysis ; Stereochemistry ; Thermodynamic properties ; Triazoles ; triazole‐thiol</subject><ispartof>Applied organometallic chemistry, 2022-05, Vol.36 (5), p.n/a</ispartof><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-be07052f0b41a1b7296a93ba175c45678c49a076c93db2fc4fe921287a276c8d3</citedby><cites>FETCH-LOGICAL-c2937-be07052f0b41a1b7296a93ba175c45678c49a076c93db2fc4fe921287a276c8d3</cites><orcidid>0000-0001-6787-7649 ; 0000-0003-3759-4060 ; 0000-0002-0293-3491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faoc.6647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faoc.6647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Fahim, Asmaa M.</creatorcontrib><creatorcontrib>Magar, Hend S.</creatorcontrib><creatorcontrib>Ayoub, Manara A.</creatorcontrib><title>Synthesis, characterization, thermal studies, electrochemical behavior, antimicrobial, docking studies, and computational simulation of triazole‐thiol metal complexes</title><title>Applied organometallic chemistry</title><description>In this study, we elucidate the structure and molecular properties of triazole‐thiol derivative (HL) which is confirmed via B3LYP/6‐31G(d) for DFT and HF basis set. Triazole‐thiol (HL) was conjugated with several metal ions to afford stable metal complexes. Consequently, confirmed via intensive physicochemical analysis including FT‐IR spectra, elemental analysis, electronic, 1H‐NMR, TGA, and DTA. The explanation of the thermal cracking of these metal complexes has been estimated. The FT‐IR of these complexes indicated the presence of triazole‐thiol ligand (HL) as chelated coordinated through the N atom of amino group and S atom of SH moiety. Furthermore, Fe(III) complex and Ni(II) adopt octahedral stereochemistry, while the Cu(II) complex is trigonal bipyramidal, and Cd(II) complex is square planar. Thermal investigation maintained the chemical formulation of these metal complexes and exhibited that they decompose in many stages dependent on the kind of ligand and geometry of complexes. Moreover, the HL and metal complexes were exhibited antimicrobial evaluation against bacterial and fungal strains and showed higher activity comparable HL. Additionally, the theoretical docking stimulation of the ligand HL and metal complexes with different proteins showed different in energy affinity with shortage bond length with metal complexes and confirmed the experimental biological results. Eventually, the electrochemical features were explored utilizing cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).</description><subject>Antiinfectives and antibacterials</subject><subject>antimicrobial action</subject><subject>Biological effects</subject><subject>Cadmium compounds</subject><subject>Chemical analysis</subject><subject>Chemistry</subject><subject>computational calculations</subject><subject>Coordination compounds</subject><subject>Copper</subject><subject>Differential thermal analysis</subject><subject>Docking</subject><subject>docking studies</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>electrochemical studies</subject><subject>Infrared spectroscopy</subject><subject>Ligands</subject><subject>metal complexes</subject><subject>Metals</subject><subject>Molecular structure</subject><subject>Nickel</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Spectrum analysis</subject><subject>Stereochemistry</subject><subject>Thermodynamic properties</subject><subject>Triazoles</subject><subject>triazole‐thiol</subject><issn>0268-2605</issn><issn>1099-0739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxq2qSGwLEo9giQuHTbGdxI6P1ar8kSr1QDlHE2fSuDjxYjuU7YlH4DF4Lp4E7y5STz2NZr7ffJrRR8gbzi44Y-I9eHMhZaVOyIozrQumSn1KVkzIphCS1S_JWYz3jDEtebUif77s5jRitHFNzQgBTMJgHyFZP69pVsIEjsa09BYzgg5NCt6MOFmThQ5H-GF9WFOYk82z4DsLbk17b77Z-e5pE-aeGj9tl3Tw3pvaaXGHhvqBpmDh0Tv8--t3Gq13dMKUof2Kw58YX5EXA7iIr__Xc_L1w9Xt5lNxffPx8-byujBCl6rokClWi4F1FQfeKaEl6LIDrmpT1VI1ptLAlDS67DsxmGpALbhoFIg8bPrynLw9-m6D_75gTO29X0K-N7ZC1pWuG9awTL07UvnhGAMO7TbYCcKu5azd59DmHNp9DhktjuiDdbh7lmsvbzYH_h8qlI6d</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Fahim, Asmaa M.</creator><creator>Magar, Hend S.</creator><creator>Ayoub, Manara A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6787-7649</orcidid><orcidid>https://orcid.org/0000-0003-3759-4060</orcidid><orcidid>https://orcid.org/0000-0002-0293-3491</orcidid></search><sort><creationdate>202205</creationdate><title>Synthesis, characterization, thermal studies, electrochemical behavior, antimicrobial, docking studies, and computational simulation of triazole‐thiol metal complexes</title><author>Fahim, Asmaa M. ; Magar, Hend S. ; Ayoub, Manara A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-be07052f0b41a1b7296a93ba175c45678c49a076c93db2fc4fe921287a276c8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiinfectives and antibacterials</topic><topic>antimicrobial action</topic><topic>Biological effects</topic><topic>Cadmium compounds</topic><topic>Chemical analysis</topic><topic>Chemistry</topic><topic>computational calculations</topic><topic>Coordination compounds</topic><topic>Copper</topic><topic>Differential thermal analysis</topic><topic>Docking</topic><topic>docking studies</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>electrochemical studies</topic><topic>Infrared spectroscopy</topic><topic>Ligands</topic><topic>metal complexes</topic><topic>Metals</topic><topic>Molecular structure</topic><topic>Nickel</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Spectrum analysis</topic><topic>Stereochemistry</topic><topic>Thermodynamic properties</topic><topic>Triazoles</topic><topic>triazole‐thiol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahim, Asmaa M.</creatorcontrib><creatorcontrib>Magar, Hend S.</creatorcontrib><creatorcontrib>Ayoub, Manara A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied organometallic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahim, Asmaa M.</au><au>Magar, Hend S.</au><au>Ayoub, Manara A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, characterization, thermal studies, electrochemical behavior, antimicrobial, docking studies, and computational simulation of triazole‐thiol metal complexes</atitle><jtitle>Applied organometallic chemistry</jtitle><date>2022-05</date><risdate>2022</risdate><volume>36</volume><issue>5</issue><epage>n/a</epage><issn>0268-2605</issn><eissn>1099-0739</eissn><abstract>In this study, we elucidate the structure and molecular properties of triazole‐thiol derivative (HL) which is confirmed via B3LYP/6‐31G(d) for DFT and HF basis set. Triazole‐thiol (HL) was conjugated with several metal ions to afford stable metal complexes. Consequently, confirmed via intensive physicochemical analysis including FT‐IR spectra, elemental analysis, electronic, 1H‐NMR, TGA, and DTA. The explanation of the thermal cracking of these metal complexes has been estimated. The FT‐IR of these complexes indicated the presence of triazole‐thiol ligand (HL) as chelated coordinated through the N atom of amino group and S atom of SH moiety. Furthermore, Fe(III) complex and Ni(II) adopt octahedral stereochemistry, while the Cu(II) complex is trigonal bipyramidal, and Cd(II) complex is square planar. Thermal investigation maintained the chemical formulation of these metal complexes and exhibited that they decompose in many stages dependent on the kind of ligand and geometry of complexes. Moreover, the HL and metal complexes were exhibited antimicrobial evaluation against bacterial and fungal strains and showed higher activity comparable HL. Additionally, the theoretical docking stimulation of the ligand HL and metal complexes with different proteins showed different in energy affinity with shortage bond length with metal complexes and confirmed the experimental biological results. Eventually, the electrochemical features were explored utilizing cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aoc.6647</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6787-7649</orcidid><orcidid>https://orcid.org/0000-0003-3759-4060</orcidid><orcidid>https://orcid.org/0000-0002-0293-3491</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2605 |
ispartof | Applied organometallic chemistry, 2022-05, Vol.36 (5), p.n/a |
issn | 0268-2605 1099-0739 |
language | eng |
recordid | cdi_proquest_journals_2654958080 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Antiinfectives and antibacterials antimicrobial action Biological effects Cadmium compounds Chemical analysis Chemistry computational calculations Coordination compounds Copper Differential thermal analysis Docking docking studies Electrochemical analysis Electrochemical impedance spectroscopy electrochemical studies Infrared spectroscopy Ligands metal complexes Metals Molecular structure Nickel NMR Nuclear magnetic resonance Spectrum analysis Stereochemistry Thermodynamic properties Triazoles triazole‐thiol |
title | Synthesis, characterization, thermal studies, electrochemical behavior, antimicrobial, docking studies, and computational simulation of triazole‐thiol metal complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20characterization,%20thermal%20studies,%20electrochemical%20behavior,%20antimicrobial,%20docking%20studies,%20and%20computational%20simulation%20of%20triazole%E2%80%90thiol%20metal%20complexes&rft.jtitle=Applied%20organometallic%20chemistry&rft.au=Fahim,%20Asmaa%20M.&rft.date=2022-05&rft.volume=36&rft.issue=5&rft.epage=n/a&rft.issn=0268-2605&rft.eissn=1099-0739&rft_id=info:doi/10.1002/aoc.6647&rft_dat=%3Cproquest_cross%3E2654958080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654958080&rft_id=info:pmid/&rfr_iscdi=true |