Dynamic top-k influence maximization in social networks
The problem of top- k influence maximization is to find the set of k users in a social network that can maximize the spread of influence under certain influence propagation model. This paper studies the influence maximization problem together with network dynamics. For example, given a real-life soc...
Gespeichert in:
Veröffentlicht in: | GeoInformatica 2022-04, Vol.26 (2), p.323-346 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 2 |
container_start_page | 323 |
container_title | GeoInformatica |
container_volume | 26 |
creator | Zhang, Binbin Wang, Hao U, Leong Hou |
description | The problem of top-
k
influence maximization is to find the set of
k
users in a social network that can maximize the spread of influence under certain influence propagation model. This paper studies the influence maximization problem together with network dynamics. For example, given a real-life social network that evolves over time, we want to find
k
most influential users on everyday basis. This dynamic influence maximization problem has wide applications in practice. However, to our best knowledge, there is little prior work that studies this problem. Applying existing influence maximization algorithms at every time step provides a straightforward solution to the dynamic top-
k
influence maximization problem. Such a solution is, however, inefficient as it completely ignores the smoothness of network change. By analyzing two real social networks, Brightkite and Gowalla, we observe that the top-
k
influential set, as well as its influence value, does not change dramatically over time. Hence, it is possible to find the new top-
k
influential set by updating the previous one. We propose an efficient incremental update framework that takes advantage of such smoothness of network change. The proposed method achieves the same approximation ratio of 1 −
e
− 1
as its state-of-the-art static counterparts. Our experiments show that the proposed method outperforms the straightforward solution by a wide margin. |
doi_str_mv | 10.1007/s10707-020-00419-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2654886160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701629976</galeid><sourcerecordid>A701629976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d30d9ef07a317db319090b440d3d12f287c55b315f5b137533081e8110d127cf3</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxFr9Ap428UwdlgV2j039mzTxomdCWWhod6HCNlo_vdQ18WY4DHnzfgPzELomMCMA4jYRECAwlIABKtJgfoImhAmKBS-r03yndYU5EewcXaS0AQCWiQkSdweveqeLIezwtnDednvjtSl69el696UGF3yWixS0U13hzfAR4jZdojOrumSufusUvT3cvy6e8PLl8XkxX2JNoRlwS6FtjAWhKBHtipIGGlhVFbS0JaUta6EZyzKzbEWoYJRCTUxNCOS20JZO0c04dxfD-96kQW7CPvr8pCw5q-qaEw7ZNRtda9UZmZcIQ1Q6n9bk3YI31mV9LoDwsmkEz0A5AjqGlKKxchddr-JBEpDHROWYqMyJyp9E5RGiI5Sy2a9N_PvLP9Q3vI92ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654886160</pqid></control><display><type>article</type><title>Dynamic top-k influence maximization in social networks</title><source>Springer journals</source><creator>Zhang, Binbin ; Wang, Hao ; U, Leong Hou</creator><creatorcontrib>Zhang, Binbin ; Wang, Hao ; U, Leong Hou</creatorcontrib><description>The problem of top-
k
influence maximization is to find the set of
k
users in a social network that can maximize the spread of influence under certain influence propagation model. This paper studies the influence maximization problem together with network dynamics. For example, given a real-life social network that evolves over time, we want to find
k
most influential users on everyday basis. This dynamic influence maximization problem has wide applications in practice. However, to our best knowledge, there is little prior work that studies this problem. Applying existing influence maximization algorithms at every time step provides a straightforward solution to the dynamic top-
k
influence maximization problem. Such a solution is, however, inefficient as it completely ignores the smoothness of network change. By analyzing two real social networks, Brightkite and Gowalla, we observe that the top-
k
influential set, as well as its influence value, does not change dramatically over time. Hence, it is possible to find the new top-
k
influential set by updating the previous one. We propose an efficient incremental update framework that takes advantage of such smoothness of network change. The proposed method achieves the same approximation ratio of 1 −
e
− 1
as its state-of-the-art static counterparts. Our experiments show that the proposed method outperforms the straightforward solution by a wide margin.</description><identifier>ISSN: 1384-6175</identifier><identifier>EISSN: 1573-7624</identifier><identifier>DOI: 10.1007/s10707-020-00419-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computer Science ; Data Structures and Information Theory ; Experiments ; Geographical Information Systems/Cartography ; Information science ; Information Storage and Retrieval ; Marketing ; Maximization ; Multimedia Information Systems ; Optimization ; Seeds ; Smoothness ; Social interactions ; Social networks ; Social organization</subject><ispartof>GeoInformatica, 2022-04, Vol.26 (2), p.323-346</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-d30d9ef07a317db319090b440d3d12f287c55b315f5b137533081e8110d127cf3</cites><orcidid>0000-0003-2129-2148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10707-020-00419-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10707-020-00419-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zhang, Binbin</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>U, Leong Hou</creatorcontrib><title>Dynamic top-k influence maximization in social networks</title><title>GeoInformatica</title><addtitle>Geoinformatica</addtitle><description>The problem of top-
k
influence maximization is to find the set of
k
users in a social network that can maximize the spread of influence under certain influence propagation model. This paper studies the influence maximization problem together with network dynamics. For example, given a real-life social network that evolves over time, we want to find
k
most influential users on everyday basis. This dynamic influence maximization problem has wide applications in practice. However, to our best knowledge, there is little prior work that studies this problem. Applying existing influence maximization algorithms at every time step provides a straightforward solution to the dynamic top-
k
influence maximization problem. Such a solution is, however, inefficient as it completely ignores the smoothness of network change. By analyzing two real social networks, Brightkite and Gowalla, we observe that the top-
k
influential set, as well as its influence value, does not change dramatically over time. Hence, it is possible to find the new top-
k
influential set by updating the previous one. We propose an efficient incremental update framework that takes advantage of such smoothness of network change. The proposed method achieves the same approximation ratio of 1 −
e
− 1
as its state-of-the-art static counterparts. Our experiments show that the proposed method outperforms the straightforward solution by a wide margin.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Experiments</subject><subject>Geographical Information Systems/Cartography</subject><subject>Information science</subject><subject>Information Storage and Retrieval</subject><subject>Marketing</subject><subject>Maximization</subject><subject>Multimedia Information Systems</subject><subject>Optimization</subject><subject>Seeds</subject><subject>Smoothness</subject><subject>Social interactions</subject><subject>Social networks</subject><subject>Social organization</subject><issn>1384-6175</issn><issn>1573-7624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9PAyEQxYnRxFr9Ap428UwdlgV2j039mzTxomdCWWhod6HCNlo_vdQ18WY4DHnzfgPzELomMCMA4jYRECAwlIABKtJgfoImhAmKBS-r03yndYU5EewcXaS0AQCWiQkSdweveqeLIezwtnDednvjtSl69el696UGF3yWixS0U13hzfAR4jZdojOrumSufusUvT3cvy6e8PLl8XkxX2JNoRlwS6FtjAWhKBHtipIGGlhVFbS0JaUta6EZyzKzbEWoYJRCTUxNCOS20JZO0c04dxfD-96kQW7CPvr8pCw5q-qaEw7ZNRtda9UZmZcIQ1Q6n9bk3YI31mV9LoDwsmkEz0A5AjqGlKKxchddr-JBEpDHROWYqMyJyp9E5RGiI5Sy2a9N_PvLP9Q3vI92ng</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhang, Binbin</creator><creator>Wang, Hao</creator><creator>U, Leong Hou</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2129-2148</orcidid></search><sort><creationdate>20220401</creationdate><title>Dynamic top-k influence maximization in social networks</title><author>Zhang, Binbin ; Wang, Hao ; U, Leong Hou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d30d9ef07a317db319090b440d3d12f287c55b315f5b137533081e8110d127cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Experiments</topic><topic>Geographical Information Systems/Cartography</topic><topic>Information science</topic><topic>Information Storage and Retrieval</topic><topic>Marketing</topic><topic>Maximization</topic><topic>Multimedia Information Systems</topic><topic>Optimization</topic><topic>Seeds</topic><topic>Smoothness</topic><topic>Social interactions</topic><topic>Social networks</topic><topic>Social organization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Binbin</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>U, Leong Hou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>GeoInformatica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Binbin</au><au>Wang, Hao</au><au>U, Leong Hou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic top-k influence maximization in social networks</atitle><jtitle>GeoInformatica</jtitle><stitle>Geoinformatica</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>26</volume><issue>2</issue><spage>323</spage><epage>346</epage><pages>323-346</pages><issn>1384-6175</issn><eissn>1573-7624</eissn><abstract>The problem of top-
k
influence maximization is to find the set of
k
users in a social network that can maximize the spread of influence under certain influence propagation model. This paper studies the influence maximization problem together with network dynamics. For example, given a real-life social network that evolves over time, we want to find
k
most influential users on everyday basis. This dynamic influence maximization problem has wide applications in practice. However, to our best knowledge, there is little prior work that studies this problem. Applying existing influence maximization algorithms at every time step provides a straightforward solution to the dynamic top-
k
influence maximization problem. Such a solution is, however, inefficient as it completely ignores the smoothness of network change. By analyzing two real social networks, Brightkite and Gowalla, we observe that the top-
k
influential set, as well as its influence value, does not change dramatically over time. Hence, it is possible to find the new top-
k
influential set by updating the previous one. We propose an efficient incremental update framework that takes advantage of such smoothness of network change. The proposed method achieves the same approximation ratio of 1 −
e
− 1
as its state-of-the-art static counterparts. Our experiments show that the proposed method outperforms the straightforward solution by a wide margin.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10707-020-00419-6</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2129-2148</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-6175 |
ispartof | GeoInformatica, 2022-04, Vol.26 (2), p.323-346 |
issn | 1384-6175 1573-7624 |
language | eng |
recordid | cdi_proquest_journals_2654886160 |
source | Springer journals |
subjects | Algorithms Approximation Computer Science Data Structures and Information Theory Experiments Geographical Information Systems/Cartography Information science Information Storage and Retrieval Marketing Maximization Multimedia Information Systems Optimization Seeds Smoothness Social interactions Social networks Social organization |
title | Dynamic top-k influence maximization in social networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20top-k%20influence%20maximization%20in%20social%20networks&rft.jtitle=GeoInformatica&rft.au=Zhang,%20Binbin&rft.date=2022-04-01&rft.volume=26&rft.issue=2&rft.spage=323&rft.epage=346&rft.pages=323-346&rft.issn=1384-6175&rft.eissn=1573-7624&rft_id=info:doi/10.1007/s10707-020-00419-6&rft_dat=%3Cgale_proqu%3EA701629976%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654886160&rft_id=info:pmid/&rft_galeid=A701629976&rfr_iscdi=true |