Dissociable causal roles of the frontal and parietal cortices in the effect of object location on object identity detection: a TMS study
According to the spatial congruency advantage, individuals exhibit higher accuracy and shorter reaction times during the visual working memory (VWM) task when VWM test stimuli appear in spatially congruent locations, relative to spatially incongruent locations, during the encoding phase. Functional...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2022-05, Vol.240 (5), p.1445-1457 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to the spatial congruency advantage, individuals exhibit higher accuracy and shorter reaction times during the visual working memory (VWM) task when VWM test stimuli appear in spatially congruent locations, relative to spatially incongruent locations, during the encoding phase. Functional magnetic resonance imaging studies have revealed changes in right inferior frontal gyrus (rIFG) and right supra-marginal gyrus (rSMG) activity as a function of object location stability. Nevertheless, it remains unclear whether these regions play a role in active object location repositioning or passive early perception of object location stability, and demonstrations of causality are lacking. In this study, we adopted an object identity change-detection task, involving a short train of 10-Hz online repetitive transcranial magnetic stimulations (rTMS) applied at the rIFG or rSMG concurrently with the onset of VWM test stimuli. In two experimental cohorts, we observed an improved accuracy in spatially incongruent high VWM load conditions when the 10 Hz-rTMS was applied at the rIFG compared with that in TMS control conditions, whereas these modulatory effects were not observed for the rSMG. Our results suggest that the rIFG and rSMG play dissociable roles in the spatial congruency effect, whereby the rIFG is engaged in active object location repositioning, while the rSMG is engaged in passive early perception of object location stability. |
---|---|
ISSN: | 0014-4819 1432-1106 |
DOI: | 10.1007/s00221-022-06344-4 |