Statistical \(p\)-convergence in lattice-normed Riesz spaces

A sequence \((x_n)\) in a lattice-normed space \((X,p,E)\) is statistical \(p\)-convergent to \(x\in X\) if there exists a statistical \(p\)-decreasing sequence \(q\stpd 0\) with an index set \(K\) such that \(\delta(K)=1\) and \(p(x_{n_k}-x)\leq q_{n_k}\) for every \(n_k\in K\). This convergence ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Abdullah, Aydın, Yapalı, Reha, Korkmaz, Erdal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Abdullah, Aydın
Yapalı, Reha
Korkmaz, Erdal
description A sequence \((x_n)\) in a lattice-normed space \((X,p,E)\) is statistical \(p\)-convergent to \(x\in X\) if there exists a statistical \(p\)-decreasing sequence \(q\stpd 0\) with an index set \(K\) such that \(\delta(K)=1\) and \(p(x_{n_k}-x)\leq q_{n_k}\) for every \(n_k\in K\). This convergence has been investigated recently for \((X,p,E)=(E,|\cdot|,E)\) under the name of statistical order convergence and under the name of statistical multiplicative order convergence, and also, for taking \(E\) as a locally solid Riesz space under the names statistically unbounded \(\tau\)-convergence and statistically multiplicative convergence. In this paper, we study the general properties of statistical \(p\)-convergence.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2654737116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654737116</sourcerecordid><originalsourceid>FETCH-proquest_journals_26547371163</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCS5JLMksLslMTsxRiNEoiNHUTc7PK0stSk_NS05VyMxTyEksAcqm6ublF-WmpigEZaYWVykUFyQmpxbzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kZmpibmxuaGhmTFxqgAnvTdq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654737116</pqid></control><display><type>article</type><title>Statistical \(p\)-convergence in lattice-normed Riesz spaces</title><source>Free E- Journals</source><creator>Abdullah, Aydın ; Yapalı, Reha ; Korkmaz, Erdal</creator><creatorcontrib>Abdullah, Aydın ; Yapalı, Reha ; Korkmaz, Erdal</creatorcontrib><description>A sequence \((x_n)\) in a lattice-normed space \((X,p,E)\) is statistical \(p\)-convergent to \(x\in X\) if there exists a statistical \(p\)-decreasing sequence \(q\stpd 0\) with an index set \(K\) such that \(\delta(K)=1\) and \(p(x_{n_k}-x)\leq q_{n_k}\) for every \(n_k\in K\). This convergence has been investigated recently for \((X,p,E)=(E,|\cdot|,E)\) under the name of statistical order convergence and under the name of statistical multiplicative order convergence, and also, for taking \(E\) as a locally solid Riesz space under the names statistically unbounded \(\tau\)-convergence and statistically multiplicative convergence. In this paper, we study the general properties of statistical \(p\)-convergence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Abdullah, Aydın</creatorcontrib><creatorcontrib>Yapalı, Reha</creatorcontrib><creatorcontrib>Korkmaz, Erdal</creatorcontrib><title>Statistical \(p\)-convergence in lattice-normed Riesz spaces</title><title>arXiv.org</title><description>A sequence \((x_n)\) in a lattice-normed space \((X,p,E)\) is statistical \(p\)-convergent to \(x\in X\) if there exists a statistical \(p\)-decreasing sequence \(q\stpd 0\) with an index set \(K\) such that \(\delta(K)=1\) and \(p(x_{n_k}-x)\leq q_{n_k}\) for every \(n_k\in K\). This convergence has been investigated recently for \((X,p,E)=(E,|\cdot|,E)\) under the name of statistical order convergence and under the name of statistical multiplicative order convergence, and also, for taking \(E\) as a locally solid Riesz space under the names statistically unbounded \(\tau\)-convergence and statistically multiplicative convergence. In this paper, we study the general properties of statistical \(p\)-convergence.</description><subject>Convergence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCS5JLMksLslMTsxRiNEoiNHUTc7PK0stSk_NS05VyMxTyEksAcqm6ublF-WmpigEZaYWVykUFyQmpxbzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kZmpibmxuaGhmTFxqgAnvTdq</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>Abdullah, Aydın</creator><creator>Yapalı, Reha</creator><creator>Korkmaz, Erdal</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220422</creationdate><title>Statistical \(p\)-convergence in lattice-normed Riesz spaces</title><author>Abdullah, Aydın ; Yapalı, Reha ; Korkmaz, Erdal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26547371163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdullah, Aydın</creatorcontrib><creatorcontrib>Yapalı, Reha</creatorcontrib><creatorcontrib>Korkmaz, Erdal</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdullah, Aydın</au><au>Yapalı, Reha</au><au>Korkmaz, Erdal</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Statistical \(p\)-convergence in lattice-normed Riesz spaces</atitle><jtitle>arXiv.org</jtitle><date>2022-04-22</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A sequence \((x_n)\) in a lattice-normed space \((X,p,E)\) is statistical \(p\)-convergent to \(x\in X\) if there exists a statistical \(p\)-decreasing sequence \(q\stpd 0\) with an index set \(K\) such that \(\delta(K)=1\) and \(p(x_{n_k}-x)\leq q_{n_k}\) for every \(n_k\in K\). This convergence has been investigated recently for \((X,p,E)=(E,|\cdot|,E)\) under the name of statistical order convergence and under the name of statistical multiplicative order convergence, and also, for taking \(E\) as a locally solid Riesz space under the names statistically unbounded \(\tau\)-convergence and statistically multiplicative convergence. In this paper, we study the general properties of statistical \(p\)-convergence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2654737116
source Free E- Journals
subjects Convergence
title Statistical \(p\)-convergence in lattice-normed Riesz spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Statistical%20%5C(p%5C)-convergence%20in%20lattice-normed%20Riesz%20spaces&rft.jtitle=arXiv.org&rft.au=Abdullah,%20Ayd%C4%B1n&rft.date=2022-04-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2654737116%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654737116&rft_id=info:pmid/&rfr_iscdi=true