A multinomial probit model with Choquet integral and attribute cut-offs

•Specified indirect utility in multinomial probit model using Choquet integral (CI).•Modeled semi-compensatory choice behavior by specifying attribute cut-offs.•Estimated the proposed model using a constrained maximum likelihood estimator.•Validated statistical properties of the estimator in a Monte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part B: methodological 2022-04, Vol.158, p.140-163
Hauptverfasser: Dubey, Subodh, Cats, Oded, Hoogendoorn, Serge, Bansal, Prateek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue
container_start_page 140
container_title Transportation research. Part B: methodological
container_volume 158
creator Dubey, Subodh
Cats, Oded
Hoogendoorn, Serge
Bansal, Prateek
description •Specified indirect utility in multinomial probit model using Choquet integral (CI).•Modeled semi-compensatory choice behavior by specifying attribute cut-offs.•Estimated the proposed model using a constrained maximum likelihood estimator.•Validated statistical properties of the estimator in a Monte Carlo study.•Showed advantages of the model in understanding New Yorkers’ travel mode choices. Several non-linear functions and machine learning methods have been developed for flexible specification of the systematic utility in discrete choice models. However, they lack interpretability, do not ensure monotonicity conditions, and restrict substitution patterns. We address the first two challenges by modeling the systematic utility using the Choquet Integral (CI) function and the last one by embedding CI into the multinomial probit (MNP) choice probability kernel. We also extend the MNP-CI model to account for attribute cut-offs that enable a modeler to approximately mimic the semi-compensatory behavior using the traditional choice experiment data. The MNP-CI model is estimated using a constrained maximum likelihood approach, and its statistical properties are validated through a comprehensive Monte Carlo study. The CI-based choice model is empirically advantageous as it captures interaction effects while maintaining monotonicity. It also provides information on the complementarity between pairs of attributes coupled with their importance ranking as a by-product of the estimation. These insights could potentially assist policymakers in making policies to improve the preference level for an alternative. These advantages of the MNP-CI model with attribute cut-offs are illustrated in an empirical application to understand New Yorkers’ preferences towards mobility-on-demand services.
doi_str_mv 10.1016/j.trb.2022.02.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2654393320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191261522000261</els_id><sourcerecordid>2654393320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-4f136b89ce53e350d59e8d9bc50bb2d5cefbd6942d469ab247b02ea9ef074f1e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AG8Fz60vSf9s8LQsugoLXvQcmuTVTWmbNUkVv71Z1rMw8C7zezMMIbcUCgq0vu-L6FXBgLECkqA5Iwu6akTOeN2ckwVQQXNW0-qSXIXQAwAvgS7Idp2N8xDt5EbbDtnBO2VjNjqDQ_Zt4z7b7N3njDGzU8QPnyztZLI2Rm_VHDHTc8xd14VrctG1Q8Cbv7sk70-Pb5vnfPe6fdmsd7lOcTEvO8prtRIaK468AlMJXBmhdAVKMVNp7JSpRclMWYtWsbJRwLAV2EGTWORLcnf6m5qmXiHK3s1-SpGS1VXJBecMkoueXNq7EDx28uDt2PofSUEe95K9THvJ414SkqBJzMOJwVT_y6KXQVucNBrrUUdpnP2H_gX_v3Nh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654393320</pqid></control><display><type>article</type><title>A multinomial probit model with Choquet integral and attribute cut-offs</title><source>Elsevier ScienceDirect Journals</source><creator>Dubey, Subodh ; Cats, Oded ; Hoogendoorn, Serge ; Bansal, Prateek</creator><creatorcontrib>Dubey, Subodh ; Cats, Oded ; Hoogendoorn, Serge ; Bansal, Prateek</creatorcontrib><description>•Specified indirect utility in multinomial probit model using Choquet integral (CI).•Modeled semi-compensatory choice behavior by specifying attribute cut-offs.•Estimated the proposed model using a constrained maximum likelihood estimator.•Validated statistical properties of the estimator in a Monte Carlo study.•Showed advantages of the model in understanding New Yorkers’ travel mode choices. Several non-linear functions and machine learning methods have been developed for flexible specification of the systematic utility in discrete choice models. However, they lack interpretability, do not ensure monotonicity conditions, and restrict substitution patterns. We address the first two challenges by modeling the systematic utility using the Choquet Integral (CI) function and the last one by embedding CI into the multinomial probit (MNP) choice probability kernel. We also extend the MNP-CI model to account for attribute cut-offs that enable a modeler to approximately mimic the semi-compensatory behavior using the traditional choice experiment data. The MNP-CI model is estimated using a constrained maximum likelihood approach, and its statistical properties are validated through a comprehensive Monte Carlo study. The CI-based choice model is empirically advantageous as it captures interaction effects while maintaining monotonicity. It also provides information on the complementarity between pairs of attributes coupled with their importance ranking as a by-product of the estimation. These insights could potentially assist policymakers in making policies to improve the preference level for an alternative. These advantages of the MNP-CI model with attribute cut-offs are illustrated in an empirical application to understand New Yorkers’ preferences towards mobility-on-demand services.</description><identifier>ISSN: 0191-2615</identifier><identifier>EISSN: 1879-2367</identifier><identifier>DOI: 10.1016/j.trb.2022.02.007</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aggregation functions ; Attribute cut-offs ; Choquet integral ; Complementarity ; Embedding ; Linear functions ; Machine learning ; Probit model ; Semi-compensatory behavior ; Statistical analysis</subject><ispartof>Transportation research. Part B: methodological, 2022-04, Vol.158, p.140-163</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier Science Ltd. Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-4f136b89ce53e350d59e8d9bc50bb2d5cefbd6942d469ab247b02ea9ef074f1e3</citedby><cites>FETCH-LOGICAL-c401t-4f136b89ce53e350d59e8d9bc50bb2d5cefbd6942d469ab247b02ea9ef074f1e3</cites><orcidid>0000-0001-6851-8461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0191261522000261$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Dubey, Subodh</creatorcontrib><creatorcontrib>Cats, Oded</creatorcontrib><creatorcontrib>Hoogendoorn, Serge</creatorcontrib><creatorcontrib>Bansal, Prateek</creatorcontrib><title>A multinomial probit model with Choquet integral and attribute cut-offs</title><title>Transportation research. Part B: methodological</title><description>•Specified indirect utility in multinomial probit model using Choquet integral (CI).•Modeled semi-compensatory choice behavior by specifying attribute cut-offs.•Estimated the proposed model using a constrained maximum likelihood estimator.•Validated statistical properties of the estimator in a Monte Carlo study.•Showed advantages of the model in understanding New Yorkers’ travel mode choices. Several non-linear functions and machine learning methods have been developed for flexible specification of the systematic utility in discrete choice models. However, they lack interpretability, do not ensure monotonicity conditions, and restrict substitution patterns. We address the first two challenges by modeling the systematic utility using the Choquet Integral (CI) function and the last one by embedding CI into the multinomial probit (MNP) choice probability kernel. We also extend the MNP-CI model to account for attribute cut-offs that enable a modeler to approximately mimic the semi-compensatory behavior using the traditional choice experiment data. The MNP-CI model is estimated using a constrained maximum likelihood approach, and its statistical properties are validated through a comprehensive Monte Carlo study. The CI-based choice model is empirically advantageous as it captures interaction effects while maintaining monotonicity. It also provides information on the complementarity between pairs of attributes coupled with their importance ranking as a by-product of the estimation. These insights could potentially assist policymakers in making policies to improve the preference level for an alternative. These advantages of the MNP-CI model with attribute cut-offs are illustrated in an empirical application to understand New Yorkers’ preferences towards mobility-on-demand services.</description><subject>Aggregation functions</subject><subject>Attribute cut-offs</subject><subject>Choquet integral</subject><subject>Complementarity</subject><subject>Embedding</subject><subject>Linear functions</subject><subject>Machine learning</subject><subject>Probit model</subject><subject>Semi-compensatory behavior</subject><subject>Statistical analysis</subject><issn>0191-2615</issn><issn>1879-2367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AG8Fz60vSf9s8LQsugoLXvQcmuTVTWmbNUkVv71Z1rMw8C7zezMMIbcUCgq0vu-L6FXBgLECkqA5Iwu6akTOeN2ckwVQQXNW0-qSXIXQAwAvgS7Idp2N8xDt5EbbDtnBO2VjNjqDQ_Zt4z7b7N3njDGzU8QPnyztZLI2Rm_VHDHTc8xd14VrctG1Q8Cbv7sk70-Pb5vnfPe6fdmsd7lOcTEvO8prtRIaK468AlMJXBmhdAVKMVNp7JSpRclMWYtWsbJRwLAV2EGTWORLcnf6m5qmXiHK3s1-SpGS1VXJBecMkoueXNq7EDx28uDt2PofSUEe95K9THvJ414SkqBJzMOJwVT_y6KXQVucNBrrUUdpnP2H_gX_v3Nh</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Dubey, Subodh</creator><creator>Cats, Oded</creator><creator>Hoogendoorn, Serge</creator><creator>Bansal, Prateek</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6851-8461</orcidid></search><sort><creationdate>202204</creationdate><title>A multinomial probit model with Choquet integral and attribute cut-offs</title><author>Dubey, Subodh ; Cats, Oded ; Hoogendoorn, Serge ; Bansal, Prateek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-4f136b89ce53e350d59e8d9bc50bb2d5cefbd6942d469ab247b02ea9ef074f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregation functions</topic><topic>Attribute cut-offs</topic><topic>Choquet integral</topic><topic>Complementarity</topic><topic>Embedding</topic><topic>Linear functions</topic><topic>Machine learning</topic><topic>Probit model</topic><topic>Semi-compensatory behavior</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubey, Subodh</creatorcontrib><creatorcontrib>Cats, Oded</creatorcontrib><creatorcontrib>Hoogendoorn, Serge</creatorcontrib><creatorcontrib>Bansal, Prateek</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Transportation research. Part B: methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubey, Subodh</au><au>Cats, Oded</au><au>Hoogendoorn, Serge</au><au>Bansal, Prateek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multinomial probit model with Choquet integral and attribute cut-offs</atitle><jtitle>Transportation research. Part B: methodological</jtitle><date>2022-04</date><risdate>2022</risdate><volume>158</volume><spage>140</spage><epage>163</epage><pages>140-163</pages><issn>0191-2615</issn><eissn>1879-2367</eissn><abstract>•Specified indirect utility in multinomial probit model using Choquet integral (CI).•Modeled semi-compensatory choice behavior by specifying attribute cut-offs.•Estimated the proposed model using a constrained maximum likelihood estimator.•Validated statistical properties of the estimator in a Monte Carlo study.•Showed advantages of the model in understanding New Yorkers’ travel mode choices. Several non-linear functions and machine learning methods have been developed for flexible specification of the systematic utility in discrete choice models. However, they lack interpretability, do not ensure monotonicity conditions, and restrict substitution patterns. We address the first two challenges by modeling the systematic utility using the Choquet Integral (CI) function and the last one by embedding CI into the multinomial probit (MNP) choice probability kernel. We also extend the MNP-CI model to account for attribute cut-offs that enable a modeler to approximately mimic the semi-compensatory behavior using the traditional choice experiment data. The MNP-CI model is estimated using a constrained maximum likelihood approach, and its statistical properties are validated through a comprehensive Monte Carlo study. The CI-based choice model is empirically advantageous as it captures interaction effects while maintaining monotonicity. It also provides information on the complementarity between pairs of attributes coupled with their importance ranking as a by-product of the estimation. These insights could potentially assist policymakers in making policies to improve the preference level for an alternative. These advantages of the MNP-CI model with attribute cut-offs are illustrated in an empirical application to understand New Yorkers’ preferences towards mobility-on-demand services.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.trb.2022.02.007</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6851-8461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0191-2615
ispartof Transportation research. Part B: methodological, 2022-04, Vol.158, p.140-163
issn 0191-2615
1879-2367
language eng
recordid cdi_proquest_journals_2654393320
source Elsevier ScienceDirect Journals
subjects Aggregation functions
Attribute cut-offs
Choquet integral
Complementarity
Embedding
Linear functions
Machine learning
Probit model
Semi-compensatory behavior
Statistical analysis
title A multinomial probit model with Choquet integral and attribute cut-offs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T06%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multinomial%20probit%20model%20with%20Choquet%20integral%20and%20attribute%20cut-offs&rft.jtitle=Transportation%20research.%20Part%20B:%20methodological&rft.au=Dubey,%20Subodh&rft.date=2022-04&rft.volume=158&rft.spage=140&rft.epage=163&rft.pages=140-163&rft.issn=0191-2615&rft.eissn=1879-2367&rft_id=info:doi/10.1016/j.trb.2022.02.007&rft_dat=%3Cproquest_cross%3E2654393320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654393320&rft_id=info:pmid/&rft_els_id=S0191261522000261&rfr_iscdi=true