Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach
We investigate whether misstatement risk estimated using advanced machine learning techniques—hereafter, estimated misstatement risk (EMR)—approximates auditors' risk assessments in practice. We find that auditors price EMR and auditor turnover is more likely to occur when EMR increases, indica...
Gespeichert in:
Veröffentlicht in: | Accounting horizons 2022-03, Vol.36 (1), p.111-130 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 1 |
container_start_page | 111 |
container_title | Accounting horizons |
container_volume | 36 |
creator | Hunt, Emily Hunt, Joshua Richardson, Vernon J. Rosser, David |
description | We investigate whether misstatement risk estimated using advanced machine learning techniques—hereafter, estimated misstatement risk (EMR)—approximates auditors' risk assessments in practice. We find that auditors price EMR and auditor turnover is more likely to occur when EMR increases, indicating that EMR is associated with auditors' risk assessment. We also find evidence that EMR is positively and significantly associated with audit fees and auditor switching for companies with Big N auditors but not for other companies, suggesting that Big N auditors are more responsive to risks captured by EMR. Additional analyses reveal that companies switching auditors when EMR increases are more likely to engage non-Big N auditors. Surprisingly, we find little evidence that the association between audit quality and EMR differs by auditor type. Our findings are consistent with the notion that the documented association between audit fees and EMR primarily reflects a risk premium in our setting. |
doi_str_mv | 10.2308/HORIZONS-19-139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2654392232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654392232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1142-d600a80318bb1680771d0e5af554bbd80bed02f5a14c90e079f5b5889abcdae83</originalsourceid><addsrcrecordid>eNo1kDFPwzAUhC0EEqUws1piDn2248Rmi6pCKwUqFVhYLDt2IIUmwXYH_j2uCtOdTqd3eh9C1wRuKQMxW643q7f103NGZEaYPEETwrnISlnyUzQBIQ5esnN0EcIWAArBYILqam-7OHi8cWEc-uBwHPAixG6no7P4sQshJrdzfcSbLnze4Qo_6uaj6x2unfZ917_jahz9kMJLdNbqr-Cu_nSKXu8XL_NlVq8fVvOqzhpCcprZAkALYEQYQwoBZUksOK5bznNjrADjLNCWa5I3EhyUsuWGCyG1aax2gk3RzfFumv3euxDVdtj7Pk0qWvCcSUoZTa3ZsdX4IQTvWjX69Jb_UQTUAZn6R6aIVAkZ-wWNtF8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654392232</pqid></control><display><type>article</type><title>Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach</title><source>Business Source Complete</source><creator>Hunt, Emily ; Hunt, Joshua ; Richardson, Vernon J. ; Rosser, David</creator><creatorcontrib>Hunt, Emily ; Hunt, Joshua ; Richardson, Vernon J. ; Rosser, David</creatorcontrib><description>We investigate whether misstatement risk estimated using advanced machine learning techniques—hereafter, estimated misstatement risk (EMR)—approximates auditors' risk assessments in practice. We find that auditors price EMR and auditor turnover is more likely to occur when EMR increases, indicating that EMR is associated with auditors' risk assessment. We also find evidence that EMR is positively and significantly associated with audit fees and auditor switching for companies with Big N auditors but not for other companies, suggesting that Big N auditors are more responsive to risks captured by EMR. Additional analyses reveal that companies switching auditors when EMR increases are more likely to engage non-Big N auditors. Surprisingly, we find little evidence that the association between audit quality and EMR differs by auditor type. Our findings are consistent with the notion that the documented association between audit fees and EMR primarily reflects a risk premium in our setting.</description><identifier>ISSN: 0888-7993</identifier><identifier>EISSN: 1558-7975</identifier><identifier>DOI: 10.2308/HORIZONS-19-139</identifier><language>eng</language><publisher>Sarasota: American Accounting Association</publisher><subject>Audit quality ; Auditing ; Auditors ; Audits ; Cognitive style ; Fees & charges ; Machine learning ; Risk assessment</subject><ispartof>Accounting horizons, 2022-03, Vol.36 (1), p.111-130</ispartof><rights>Copyright American Accounting Association Mar 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1142-d600a80318bb1680771d0e5af554bbd80bed02f5a14c90e079f5b5889abcdae83</citedby><cites>FETCH-LOGICAL-c1142-d600a80318bb1680771d0e5af554bbd80bed02f5a14c90e079f5b5889abcdae83</cites><orcidid>0000-0002-3397-3744 ; 0000-0003-1147-2356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hunt, Emily</creatorcontrib><creatorcontrib>Hunt, Joshua</creatorcontrib><creatorcontrib>Richardson, Vernon J.</creatorcontrib><creatorcontrib>Rosser, David</creatorcontrib><title>Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach</title><title>Accounting horizons</title><description>We investigate whether misstatement risk estimated using advanced machine learning techniques—hereafter, estimated misstatement risk (EMR)—approximates auditors' risk assessments in practice. We find that auditors price EMR and auditor turnover is more likely to occur when EMR increases, indicating that EMR is associated with auditors' risk assessment. We also find evidence that EMR is positively and significantly associated with audit fees and auditor switching for companies with Big N auditors but not for other companies, suggesting that Big N auditors are more responsive to risks captured by EMR. Additional analyses reveal that companies switching auditors when EMR increases are more likely to engage non-Big N auditors. Surprisingly, we find little evidence that the association between audit quality and EMR differs by auditor type. Our findings are consistent with the notion that the documented association between audit fees and EMR primarily reflects a risk premium in our setting.</description><subject>Audit quality</subject><subject>Auditing</subject><subject>Auditors</subject><subject>Audits</subject><subject>Cognitive style</subject><subject>Fees & charges</subject><subject>Machine learning</subject><subject>Risk assessment</subject><issn>0888-7993</issn><issn>1558-7975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo1kDFPwzAUhC0EEqUws1piDn2248Rmi6pCKwUqFVhYLDt2IIUmwXYH_j2uCtOdTqd3eh9C1wRuKQMxW643q7f103NGZEaYPEETwrnISlnyUzQBIQ5esnN0EcIWAArBYILqam-7OHi8cWEc-uBwHPAixG6no7P4sQshJrdzfcSbLnze4Qo_6uaj6x2unfZ917_jahz9kMJLdNbqr-Cu_nSKXu8XL_NlVq8fVvOqzhpCcprZAkALYEQYQwoBZUksOK5bznNjrADjLNCWa5I3EhyUsuWGCyG1aax2gk3RzfFumv3euxDVdtj7Pk0qWvCcSUoZTa3ZsdX4IQTvWjX69Jb_UQTUAZn6R6aIVAkZ-wWNtF8c</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Hunt, Emily</creator><creator>Hunt, Joshua</creator><creator>Richardson, Vernon J.</creator><creator>Rosser, David</creator><general>American Accounting Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0002-3397-3744</orcidid><orcidid>https://orcid.org/0000-0003-1147-2356</orcidid></search><sort><creationdate>20220301</creationdate><title>Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach</title><author>Hunt, Emily ; Hunt, Joshua ; Richardson, Vernon J. ; Rosser, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1142-d600a80318bb1680771d0e5af554bbd80bed02f5a14c90e079f5b5889abcdae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Audit quality</topic><topic>Auditing</topic><topic>Auditors</topic><topic>Audits</topic><topic>Cognitive style</topic><topic>Fees & charges</topic><topic>Machine learning</topic><topic>Risk assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Emily</creatorcontrib><creatorcontrib>Hunt, Joshua</creatorcontrib><creatorcontrib>Richardson, Vernon J.</creatorcontrib><creatorcontrib>Rosser, David</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Accounting horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Emily</au><au>Hunt, Joshua</au><au>Richardson, Vernon J.</au><au>Rosser, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach</atitle><jtitle>Accounting horizons</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>36</volume><issue>1</issue><spage>111</spage><epage>130</epage><pages>111-130</pages><issn>0888-7993</issn><eissn>1558-7975</eissn><abstract>We investigate whether misstatement risk estimated using advanced machine learning techniques—hereafter, estimated misstatement risk (EMR)—approximates auditors' risk assessments in practice. We find that auditors price EMR and auditor turnover is more likely to occur when EMR increases, indicating that EMR is associated with auditors' risk assessment. We also find evidence that EMR is positively and significantly associated with audit fees and auditor switching for companies with Big N auditors but not for other companies, suggesting that Big N auditors are more responsive to risks captured by EMR. Additional analyses reveal that companies switching auditors when EMR increases are more likely to engage non-Big N auditors. Surprisingly, we find little evidence that the association between audit quality and EMR differs by auditor type. Our findings are consistent with the notion that the documented association between audit fees and EMR primarily reflects a risk premium in our setting.</abstract><cop>Sarasota</cop><pub>American Accounting Association</pub><doi>10.2308/HORIZONS-19-139</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3397-3744</orcidid><orcidid>https://orcid.org/0000-0003-1147-2356</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-7993 |
ispartof | Accounting horizons, 2022-03, Vol.36 (1), p.111-130 |
issn | 0888-7993 1558-7975 |
language | eng |
recordid | cdi_proquest_journals_2654392232 |
source | Business Source Complete |
subjects | Audit quality Auditing Auditors Audits Cognitive style Fees & charges Machine learning Risk assessment |
title | Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auditor%20Response%20to%20Estimated%20Misstatement%20Risk:%20A%20Machine%20Learning%20Approach&rft.jtitle=Accounting%20horizons&rft.au=Hunt,%20Emily&rft.date=2022-03-01&rft.volume=36&rft.issue=1&rft.spage=111&rft.epage=130&rft.pages=111-130&rft.issn=0888-7993&rft.eissn=1558-7975&rft_id=info:doi/10.2308/HORIZONS-19-139&rft_dat=%3Cproquest_cross%3E2654392232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654392232&rft_id=info:pmid/&rfr_iscdi=true |