Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach

We investigate whether misstatement risk estimated using advanced machine learning techniques—hereafter, estimated misstatement risk (EMR)—approximates auditors' risk assessments in practice. We find that auditors price EMR and auditor turnover is more likely to occur when EMR increases, indica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accounting horizons 2022-03, Vol.36 (1), p.111-130
Hauptverfasser: Hunt, Emily, Hunt, Joshua, Richardson, Vernon J., Rosser, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 1
container_start_page 111
container_title Accounting horizons
container_volume 36
creator Hunt, Emily
Hunt, Joshua
Richardson, Vernon J.
Rosser, David
description We investigate whether misstatement risk estimated using advanced machine learning techniques—hereafter, estimated misstatement risk (EMR)—approximates auditors' risk assessments in practice. We find that auditors price EMR and auditor turnover is more likely to occur when EMR increases, indicating that EMR is associated with auditors' risk assessment. We also find evidence that EMR is positively and significantly associated with audit fees and auditor switching for companies with Big N auditors but not for other companies, suggesting that Big N auditors are more responsive to risks captured by EMR. Additional analyses reveal that companies switching auditors when EMR increases are more likely to engage non-Big N auditors. Surprisingly, we find little evidence that the association between audit quality and EMR differs by auditor type. Our findings are consistent with the notion that the documented association between audit fees and EMR primarily reflects a risk premium in our setting.
doi_str_mv 10.2308/HORIZONS-19-139
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2654392232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654392232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1142-d600a80318bb1680771d0e5af554bbd80bed02f5a14c90e079f5b5889abcdae83</originalsourceid><addsrcrecordid>eNo1kDFPwzAUhC0EEqUws1piDn2248Rmi6pCKwUqFVhYLDt2IIUmwXYH_j2uCtOdTqd3eh9C1wRuKQMxW643q7f103NGZEaYPEETwrnISlnyUzQBIQ5esnN0EcIWAArBYILqam-7OHi8cWEc-uBwHPAixG6no7P4sQshJrdzfcSbLnze4Qo_6uaj6x2unfZ917_jahz9kMJLdNbqr-Cu_nSKXu8XL_NlVq8fVvOqzhpCcprZAkALYEQYQwoBZUksOK5bznNjrADjLNCWa5I3EhyUsuWGCyG1aax2gk3RzfFumv3euxDVdtj7Pk0qWvCcSUoZTa3ZsdX4IQTvWjX69Jb_UQTUAZn6R6aIVAkZ-wWNtF8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654392232</pqid></control><display><type>article</type><title>Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach</title><source>Business Source Complete</source><creator>Hunt, Emily ; Hunt, Joshua ; Richardson, Vernon J. ; Rosser, David</creator><creatorcontrib>Hunt, Emily ; Hunt, Joshua ; Richardson, Vernon J. ; Rosser, David</creatorcontrib><description>We investigate whether misstatement risk estimated using advanced machine learning techniques—hereafter, estimated misstatement risk (EMR)—approximates auditors' risk assessments in practice. We find that auditors price EMR and auditor turnover is more likely to occur when EMR increases, indicating that EMR is associated with auditors' risk assessment. We also find evidence that EMR is positively and significantly associated with audit fees and auditor switching for companies with Big N auditors but not for other companies, suggesting that Big N auditors are more responsive to risks captured by EMR. Additional analyses reveal that companies switching auditors when EMR increases are more likely to engage non-Big N auditors. Surprisingly, we find little evidence that the association between audit quality and EMR differs by auditor type. Our findings are consistent with the notion that the documented association between audit fees and EMR primarily reflects a risk premium in our setting.</description><identifier>ISSN: 0888-7993</identifier><identifier>EISSN: 1558-7975</identifier><identifier>DOI: 10.2308/HORIZONS-19-139</identifier><language>eng</language><publisher>Sarasota: American Accounting Association</publisher><subject>Audit quality ; Auditing ; Auditors ; Audits ; Cognitive style ; Fees &amp; charges ; Machine learning ; Risk assessment</subject><ispartof>Accounting horizons, 2022-03, Vol.36 (1), p.111-130</ispartof><rights>Copyright American Accounting Association Mar 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1142-d600a80318bb1680771d0e5af554bbd80bed02f5a14c90e079f5b5889abcdae83</citedby><cites>FETCH-LOGICAL-c1142-d600a80318bb1680771d0e5af554bbd80bed02f5a14c90e079f5b5889abcdae83</cites><orcidid>0000-0002-3397-3744 ; 0000-0003-1147-2356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hunt, Emily</creatorcontrib><creatorcontrib>Hunt, Joshua</creatorcontrib><creatorcontrib>Richardson, Vernon J.</creatorcontrib><creatorcontrib>Rosser, David</creatorcontrib><title>Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach</title><title>Accounting horizons</title><description>We investigate whether misstatement risk estimated using advanced machine learning techniques—hereafter, estimated misstatement risk (EMR)—approximates auditors' risk assessments in practice. We find that auditors price EMR and auditor turnover is more likely to occur when EMR increases, indicating that EMR is associated with auditors' risk assessment. We also find evidence that EMR is positively and significantly associated with audit fees and auditor switching for companies with Big N auditors but not for other companies, suggesting that Big N auditors are more responsive to risks captured by EMR. Additional analyses reveal that companies switching auditors when EMR increases are more likely to engage non-Big N auditors. Surprisingly, we find little evidence that the association between audit quality and EMR differs by auditor type. Our findings are consistent with the notion that the documented association between audit fees and EMR primarily reflects a risk premium in our setting.</description><subject>Audit quality</subject><subject>Auditing</subject><subject>Auditors</subject><subject>Audits</subject><subject>Cognitive style</subject><subject>Fees &amp; charges</subject><subject>Machine learning</subject><subject>Risk assessment</subject><issn>0888-7993</issn><issn>1558-7975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo1kDFPwzAUhC0EEqUws1piDn2248Rmi6pCKwUqFVhYLDt2IIUmwXYH_j2uCtOdTqd3eh9C1wRuKQMxW643q7f103NGZEaYPEETwrnISlnyUzQBIQ5esnN0EcIWAArBYILqam-7OHi8cWEc-uBwHPAixG6no7P4sQshJrdzfcSbLnze4Qo_6uaj6x2unfZ917_jahz9kMJLdNbqr-Cu_nSKXu8XL_NlVq8fVvOqzhpCcprZAkALYEQYQwoBZUksOK5bznNjrADjLNCWa5I3EhyUsuWGCyG1aax2gk3RzfFumv3euxDVdtj7Pk0qWvCcSUoZTa3ZsdX4IQTvWjX69Jb_UQTUAZn6R6aIVAkZ-wWNtF8c</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Hunt, Emily</creator><creator>Hunt, Joshua</creator><creator>Richardson, Vernon J.</creator><creator>Rosser, David</creator><general>American Accounting Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0002-3397-3744</orcidid><orcidid>https://orcid.org/0000-0003-1147-2356</orcidid></search><sort><creationdate>20220301</creationdate><title>Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach</title><author>Hunt, Emily ; Hunt, Joshua ; Richardson, Vernon J. ; Rosser, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1142-d600a80318bb1680771d0e5af554bbd80bed02f5a14c90e079f5b5889abcdae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Audit quality</topic><topic>Auditing</topic><topic>Auditors</topic><topic>Audits</topic><topic>Cognitive style</topic><topic>Fees &amp; charges</topic><topic>Machine learning</topic><topic>Risk assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Emily</creatorcontrib><creatorcontrib>Hunt, Joshua</creatorcontrib><creatorcontrib>Richardson, Vernon J.</creatorcontrib><creatorcontrib>Rosser, David</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Accounting horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Emily</au><au>Hunt, Joshua</au><au>Richardson, Vernon J.</au><au>Rosser, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach</atitle><jtitle>Accounting horizons</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>36</volume><issue>1</issue><spage>111</spage><epage>130</epage><pages>111-130</pages><issn>0888-7993</issn><eissn>1558-7975</eissn><abstract>We investigate whether misstatement risk estimated using advanced machine learning techniques—hereafter, estimated misstatement risk (EMR)—approximates auditors' risk assessments in practice. We find that auditors price EMR and auditor turnover is more likely to occur when EMR increases, indicating that EMR is associated with auditors' risk assessment. We also find evidence that EMR is positively and significantly associated with audit fees and auditor switching for companies with Big N auditors but not for other companies, suggesting that Big N auditors are more responsive to risks captured by EMR. Additional analyses reveal that companies switching auditors when EMR increases are more likely to engage non-Big N auditors. Surprisingly, we find little evidence that the association between audit quality and EMR differs by auditor type. Our findings are consistent with the notion that the documented association between audit fees and EMR primarily reflects a risk premium in our setting.</abstract><cop>Sarasota</cop><pub>American Accounting Association</pub><doi>10.2308/HORIZONS-19-139</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3397-3744</orcidid><orcidid>https://orcid.org/0000-0003-1147-2356</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-7993
ispartof Accounting horizons, 2022-03, Vol.36 (1), p.111-130
issn 0888-7993
1558-7975
language eng
recordid cdi_proquest_journals_2654392232
source Business Source Complete
subjects Audit quality
Auditing
Auditors
Audits
Cognitive style
Fees & charges
Machine learning
Risk assessment
title Auditor Response to Estimated Misstatement Risk: A Machine Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auditor%20Response%20to%20Estimated%20Misstatement%20Risk:%20A%20Machine%20Learning%20Approach&rft.jtitle=Accounting%20horizons&rft.au=Hunt,%20Emily&rft.date=2022-03-01&rft.volume=36&rft.issue=1&rft.spage=111&rft.epage=130&rft.pages=111-130&rft.issn=0888-7993&rft.eissn=1558-7975&rft_id=info:doi/10.2308/HORIZONS-19-139&rft_dat=%3Cproquest_cross%3E2654392232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654392232&rft_id=info:pmid/&rfr_iscdi=true