Magnetoactive electrospun hybrid scaffolds based on poly(vinylidene fluoride‐co‐trifluoroethylene) and magnetite particles with varied sizes
The development of functional magnetoactive materials fabricated in the form of electrospun scaffolds is of paramount importance for modern medicine and pharmaceuticals. To precisely control the morphology and magnetic properties of the composite magnetoactive scaffolds, the electrospinning conditio...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2022-05, Vol.62 (5), p.1593-1607 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1607 |
---|---|
container_issue | 5 |
container_start_page | 1593 |
container_title | Polymer engineering and science |
container_volume | 62 |
creator | Botvin, Vladimir V. Surmeneva, Maria A. Mukhortova, Yulia R. Belyakova, Elizaveta O. Wagner, Dmitriy V. Chelobanov, Boris P. Laktionov, Pavel P. Sukhinina, Ekaterina V. Pershina, Alexandra G. Kholkin, Andrei L. Surmenev, Roman A. |
description | The development of functional magnetoactive materials fabricated in the form of electrospun scaffolds is of paramount importance for modern medicine and pharmaceuticals. To precisely control the morphology and magnetic properties of the composite magnetoactive scaffolds, the electrospinning conditions, incorporation method of magnetic particles into the polymer solution to avoid agglomeration, and the shape/size of the particles should be thoroughly studied. In this study, hybrid magnetoactive scaffolds based on poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)), doped with either unmodified magnetite (Fe3O4) or magnetite particles modified with oleic acid (Fe3O4/OA), have been fabricated by electrospinning. Modification of magnetite particles by oleic acid results in the formation of nanosized particles in comparison with submicron‐sized Fe3O4 particles (37 vs. 329 nm), which reveal a greater affinity to P(VDF‐TrFE) due to their hydrophobic surface. Composite scaffolds prepared using 30 wt% polymer solution with 8 wt% Fe3O4 and Fe3O4/OA reveal saturation magnetization values of 9.14 and 5.8 emu/g, respectively. The saturation magnetization of composite scaffolds agrees well with the saturation magnetization of the initial magnetites. Considering the better dispersion of Fe3O4/OA in the polymer solution, a series of composite scaffolds with 4 and 12 wt% concentrations of magnetite have been studied. Cytotoxicity tests demonstrated that all the fabricated composite scaffolds are nontoxic to human cells. Variation of magnetite particles content in the polymer fibers enables to obtain composite scaffolds with tailored saturation magnetization, which can be potentially used as perspective magnetoactive and magnetoelectric materials for biomedical application.
Magnetoactive composite materials have a great perspective as materials for biomedical applications. Hybrid scaffolds based on P(VDF‐TrFE), doped with either unmodified magnetite or magnetite particles modified with oleic acid (Fe3O4/OA) are fabricated by electrospinning. Variation of Fe3O4/OA concentration allows tailoring saturation magnetization of the composite magnetoactive scaffolds. Cytotoxicity tests of pure and composite scaffolds demonstrated that the prepared materials are nontoxic. |
doi_str_mv | 10.1002/pen.25947 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2654300797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A705931968</galeid><sourcerecordid>A705931968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4397-fa76cb67a8e33d9e04472b866a66e52ec1993967870243d42c5d8c27a439ddb03</originalsourceid><addsrcrecordid>eNp10lFrFDEQAOBFFDyrD_6DgC8W3Gs22U02j6W0KrTqgz6HbDK7l7KXrEn2yvrkT-hv9JeY3glaOAlMYPhmhpApitcVXlcYk7MJ3Jo0ouZPilXV1G1JGK2fFiuMKSlp27bPixcx3uJsaSNWxf2NGhwkr3SyO0Awgk7Bx2l2aLN0wRoUtep7P5qIOhXBIO_Q5Mfl7c66ZbQGHKB-nH2m8OvnvfY5pGD3KQ9ps4xZnCLlDNruR9kEaFIhWT1CRHc2bdBOBZs7R_sD4sviWa_GCK_-3CfFt6vLrxcfyuvP7z9enF-XuqaCl73iTHeMqxYoNQJwXXPStYwpxqAhoCshqGC85ZjU1NREN6bVhKtcbUyH6Unx5tB3Cv77DDHJWz8Hl0dKwpqaYswF_6sGNYK0rvcpKL21UctzjhtBK8HarMojasgPD2r0Dnqb04_8-ojPx8DW6qMF7_4p6OZoHcQcoh02KQ5qjvExPz1wnb8yBujlFOxWhUVWWD6sicxrIvdrku3Zwd7lmcv_ofxy-elQ8Rs4VcIL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654300797</pqid></control><display><type>article</type><title>Magnetoactive electrospun hybrid scaffolds based on poly(vinylidene fluoride‐co‐trifluoroethylene) and magnetite particles with varied sizes</title><source>Access via Wiley Online Library</source><creator>Botvin, Vladimir V. ; Surmeneva, Maria A. ; Mukhortova, Yulia R. ; Belyakova, Elizaveta O. ; Wagner, Dmitriy V. ; Chelobanov, Boris P. ; Laktionov, Pavel P. ; Sukhinina, Ekaterina V. ; Pershina, Alexandra G. ; Kholkin, Andrei L. ; Surmenev, Roman A.</creator><creatorcontrib>Botvin, Vladimir V. ; Surmeneva, Maria A. ; Mukhortova, Yulia R. ; Belyakova, Elizaveta O. ; Wagner, Dmitriy V. ; Chelobanov, Boris P. ; Laktionov, Pavel P. ; Sukhinina, Ekaterina V. ; Pershina, Alexandra G. ; Kholkin, Andrei L. ; Surmenev, Roman A.</creatorcontrib><description>The development of functional magnetoactive materials fabricated in the form of electrospun scaffolds is of paramount importance for modern medicine and pharmaceuticals. To precisely control the morphology and magnetic properties of the composite magnetoactive scaffolds, the electrospinning conditions, incorporation method of magnetic particles into the polymer solution to avoid agglomeration, and the shape/size of the particles should be thoroughly studied. In this study, hybrid magnetoactive scaffolds based on poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)), doped with either unmodified magnetite (Fe3O4) or magnetite particles modified with oleic acid (Fe3O4/OA), have been fabricated by electrospinning. Modification of magnetite particles by oleic acid results in the formation of nanosized particles in comparison with submicron‐sized Fe3O4 particles (37 vs. 329 nm), which reveal a greater affinity to P(VDF‐TrFE) due to their hydrophobic surface. Composite scaffolds prepared using 30 wt% polymer solution with 8 wt% Fe3O4 and Fe3O4/OA reveal saturation magnetization values of 9.14 and 5.8 emu/g, respectively. The saturation magnetization of composite scaffolds agrees well with the saturation magnetization of the initial magnetites. Considering the better dispersion of Fe3O4/OA in the polymer solution, a series of composite scaffolds with 4 and 12 wt% concentrations of magnetite have been studied. Cytotoxicity tests demonstrated that all the fabricated composite scaffolds are nontoxic to human cells. Variation of magnetite particles content in the polymer fibers enables to obtain composite scaffolds with tailored saturation magnetization, which can be potentially used as perspective magnetoactive and magnetoelectric materials for biomedical application.
Magnetoactive composite materials have a great perspective as materials for biomedical applications. Hybrid scaffolds based on P(VDF‐TrFE), doped with either unmodified magnetite or magnetite particles modified with oleic acid (Fe3O4/OA) are fabricated by electrospinning. Variation of Fe3O4/OA concentration allows tailoring saturation magnetization of the composite magnetoactive scaffolds. Cytotoxicity tests of pure and composite scaffolds demonstrated that the prepared materials are nontoxic.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25947</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Biocompatibility ; Biomedical materials ; composites ; Electrospinning ; Fluorides ; fluoropolymers ; Iron oxides ; Magnetic properties ; Magnetic saturation ; Magnetite ; Magnetization ; Mechanical properties ; Nanoparticles ; Oleic acid ; Polyethylene ; Polymers ; Polyvinylidene fluoride ; scaffold ; Scaffolds ; Toxicity ; Vinylidene ; Vinylidene fluoride</subject><ispartof>Polymer engineering and science, 2022-05, Vol.62 (5), p.1593-1607</ispartof><rights>2022 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2022 Society of Plastics Engineers, Inc.</rights><rights>2022 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4397-fa76cb67a8e33d9e04472b866a66e52ec1993967870243d42c5d8c27a439ddb03</citedby><cites>FETCH-LOGICAL-c4397-fa76cb67a8e33d9e04472b866a66e52ec1993967870243d42c5d8c27a439ddb03</cites><orcidid>0000-0003-1792-8625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25947$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25947$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Botvin, Vladimir V.</creatorcontrib><creatorcontrib>Surmeneva, Maria A.</creatorcontrib><creatorcontrib>Mukhortova, Yulia R.</creatorcontrib><creatorcontrib>Belyakova, Elizaveta O.</creatorcontrib><creatorcontrib>Wagner, Dmitriy V.</creatorcontrib><creatorcontrib>Chelobanov, Boris P.</creatorcontrib><creatorcontrib>Laktionov, Pavel P.</creatorcontrib><creatorcontrib>Sukhinina, Ekaterina V.</creatorcontrib><creatorcontrib>Pershina, Alexandra G.</creatorcontrib><creatorcontrib>Kholkin, Andrei L.</creatorcontrib><creatorcontrib>Surmenev, Roman A.</creatorcontrib><title>Magnetoactive electrospun hybrid scaffolds based on poly(vinylidene fluoride‐co‐trifluoroethylene) and magnetite particles with varied sizes</title><title>Polymer engineering and science</title><description>The development of functional magnetoactive materials fabricated in the form of electrospun scaffolds is of paramount importance for modern medicine and pharmaceuticals. To precisely control the morphology and magnetic properties of the composite magnetoactive scaffolds, the electrospinning conditions, incorporation method of magnetic particles into the polymer solution to avoid agglomeration, and the shape/size of the particles should be thoroughly studied. In this study, hybrid magnetoactive scaffolds based on poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)), doped with either unmodified magnetite (Fe3O4) or magnetite particles modified with oleic acid (Fe3O4/OA), have been fabricated by electrospinning. Modification of magnetite particles by oleic acid results in the formation of nanosized particles in comparison with submicron‐sized Fe3O4 particles (37 vs. 329 nm), which reveal a greater affinity to P(VDF‐TrFE) due to their hydrophobic surface. Composite scaffolds prepared using 30 wt% polymer solution with 8 wt% Fe3O4 and Fe3O4/OA reveal saturation magnetization values of 9.14 and 5.8 emu/g, respectively. The saturation magnetization of composite scaffolds agrees well with the saturation magnetization of the initial magnetites. Considering the better dispersion of Fe3O4/OA in the polymer solution, a series of composite scaffolds with 4 and 12 wt% concentrations of magnetite have been studied. Cytotoxicity tests demonstrated that all the fabricated composite scaffolds are nontoxic to human cells. Variation of magnetite particles content in the polymer fibers enables to obtain composite scaffolds with tailored saturation magnetization, which can be potentially used as perspective magnetoactive and magnetoelectric materials for biomedical application.
Magnetoactive composite materials have a great perspective as materials for biomedical applications. Hybrid scaffolds based on P(VDF‐TrFE), doped with either unmodified magnetite or magnetite particles modified with oleic acid (Fe3O4/OA) are fabricated by electrospinning. Variation of Fe3O4/OA concentration allows tailoring saturation magnetization of the composite magnetoactive scaffolds. Cytotoxicity tests of pure and composite scaffolds demonstrated that the prepared materials are nontoxic.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>composites</subject><subject>Electrospinning</subject><subject>Fluorides</subject><subject>fluoropolymers</subject><subject>Iron oxides</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetite</subject><subject>Magnetization</subject><subject>Mechanical properties</subject><subject>Nanoparticles</subject><subject>Oleic acid</subject><subject>Polyethylene</subject><subject>Polymers</subject><subject>Polyvinylidene fluoride</subject><subject>scaffold</subject><subject>Scaffolds</subject><subject>Toxicity</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10lFrFDEQAOBFFDyrD_6DgC8W3Gs22U02j6W0KrTqgz6HbDK7l7KXrEn2yvrkT-hv9JeY3glaOAlMYPhmhpApitcVXlcYk7MJ3Jo0ouZPilXV1G1JGK2fFiuMKSlp27bPixcx3uJsaSNWxf2NGhwkr3SyO0Awgk7Bx2l2aLN0wRoUtep7P5qIOhXBIO_Q5Mfl7c66ZbQGHKB-nH2m8OvnvfY5pGD3KQ9ps4xZnCLlDNruR9kEaFIhWT1CRHc2bdBOBZs7R_sD4sviWa_GCK_-3CfFt6vLrxcfyuvP7z9enF-XuqaCl73iTHeMqxYoNQJwXXPStYwpxqAhoCshqGC85ZjU1NREN6bVhKtcbUyH6Unx5tB3Cv77DDHJWz8Hl0dKwpqaYswF_6sGNYK0rvcpKL21UctzjhtBK8HarMojasgPD2r0Dnqb04_8-ojPx8DW6qMF7_4p6OZoHcQcoh02KQ5qjvExPz1wnb8yBujlFOxWhUVWWD6sicxrIvdrku3Zwd7lmcv_ofxy-elQ8Rs4VcIL</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Botvin, Vladimir V.</creator><creator>Surmeneva, Maria A.</creator><creator>Mukhortova, Yulia R.</creator><creator>Belyakova, Elizaveta O.</creator><creator>Wagner, Dmitriy V.</creator><creator>Chelobanov, Boris P.</creator><creator>Laktionov, Pavel P.</creator><creator>Sukhinina, Ekaterina V.</creator><creator>Pershina, Alexandra G.</creator><creator>Kholkin, Andrei L.</creator><creator>Surmenev, Roman A.</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1792-8625</orcidid></search><sort><creationdate>202205</creationdate><title>Magnetoactive electrospun hybrid scaffolds based on poly(vinylidene fluoride‐co‐trifluoroethylene) and magnetite particles with varied sizes</title><author>Botvin, Vladimir V. ; Surmeneva, Maria A. ; Mukhortova, Yulia R. ; Belyakova, Elizaveta O. ; Wagner, Dmitriy V. ; Chelobanov, Boris P. ; Laktionov, Pavel P. ; Sukhinina, Ekaterina V. ; Pershina, Alexandra G. ; Kholkin, Andrei L. ; Surmenev, Roman A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4397-fa76cb67a8e33d9e04472b866a66e52ec1993967870243d42c5d8c27a439ddb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>composites</topic><topic>Electrospinning</topic><topic>Fluorides</topic><topic>fluoropolymers</topic><topic>Iron oxides</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetite</topic><topic>Magnetization</topic><topic>Mechanical properties</topic><topic>Nanoparticles</topic><topic>Oleic acid</topic><topic>Polyethylene</topic><topic>Polymers</topic><topic>Polyvinylidene fluoride</topic><topic>scaffold</topic><topic>Scaffolds</topic><topic>Toxicity</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botvin, Vladimir V.</creatorcontrib><creatorcontrib>Surmeneva, Maria A.</creatorcontrib><creatorcontrib>Mukhortova, Yulia R.</creatorcontrib><creatorcontrib>Belyakova, Elizaveta O.</creatorcontrib><creatorcontrib>Wagner, Dmitriy V.</creatorcontrib><creatorcontrib>Chelobanov, Boris P.</creatorcontrib><creatorcontrib>Laktionov, Pavel P.</creatorcontrib><creatorcontrib>Sukhinina, Ekaterina V.</creatorcontrib><creatorcontrib>Pershina, Alexandra G.</creatorcontrib><creatorcontrib>Kholkin, Andrei L.</creatorcontrib><creatorcontrib>Surmenev, Roman A.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botvin, Vladimir V.</au><au>Surmeneva, Maria A.</au><au>Mukhortova, Yulia R.</au><au>Belyakova, Elizaveta O.</au><au>Wagner, Dmitriy V.</au><au>Chelobanov, Boris P.</au><au>Laktionov, Pavel P.</au><au>Sukhinina, Ekaterina V.</au><au>Pershina, Alexandra G.</au><au>Kholkin, Andrei L.</au><au>Surmenev, Roman A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetoactive electrospun hybrid scaffolds based on poly(vinylidene fluoride‐co‐trifluoroethylene) and magnetite particles with varied sizes</atitle><jtitle>Polymer engineering and science</jtitle><date>2022-05</date><risdate>2022</risdate><volume>62</volume><issue>5</issue><spage>1593</spage><epage>1607</epage><pages>1593-1607</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>The development of functional magnetoactive materials fabricated in the form of electrospun scaffolds is of paramount importance for modern medicine and pharmaceuticals. To precisely control the morphology and magnetic properties of the composite magnetoactive scaffolds, the electrospinning conditions, incorporation method of magnetic particles into the polymer solution to avoid agglomeration, and the shape/size of the particles should be thoroughly studied. In this study, hybrid magnetoactive scaffolds based on poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)), doped with either unmodified magnetite (Fe3O4) or magnetite particles modified with oleic acid (Fe3O4/OA), have been fabricated by electrospinning. Modification of magnetite particles by oleic acid results in the formation of nanosized particles in comparison with submicron‐sized Fe3O4 particles (37 vs. 329 nm), which reveal a greater affinity to P(VDF‐TrFE) due to their hydrophobic surface. Composite scaffolds prepared using 30 wt% polymer solution with 8 wt% Fe3O4 and Fe3O4/OA reveal saturation magnetization values of 9.14 and 5.8 emu/g, respectively. The saturation magnetization of composite scaffolds agrees well with the saturation magnetization of the initial magnetites. Considering the better dispersion of Fe3O4/OA in the polymer solution, a series of composite scaffolds with 4 and 12 wt% concentrations of magnetite have been studied. Cytotoxicity tests demonstrated that all the fabricated composite scaffolds are nontoxic to human cells. Variation of magnetite particles content in the polymer fibers enables to obtain composite scaffolds with tailored saturation magnetization, which can be potentially used as perspective magnetoactive and magnetoelectric materials for biomedical application.
Magnetoactive composite materials have a great perspective as materials for biomedical applications. Hybrid scaffolds based on P(VDF‐TrFE), doped with either unmodified magnetite or magnetite particles modified with oleic acid (Fe3O4/OA) are fabricated by electrospinning. Variation of Fe3O4/OA concentration allows tailoring saturation magnetization of the composite magnetoactive scaffolds. Cytotoxicity tests of pure and composite scaffolds demonstrated that the prepared materials are nontoxic.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25947</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1792-8625</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2022-05, Vol.62 (5), p.1593-1607 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2654300797 |
source | Access via Wiley Online Library |
subjects | Biocompatibility Biomedical materials composites Electrospinning Fluorides fluoropolymers Iron oxides Magnetic properties Magnetic saturation Magnetite Magnetization Mechanical properties Nanoparticles Oleic acid Polyethylene Polymers Polyvinylidene fluoride scaffold Scaffolds Toxicity Vinylidene Vinylidene fluoride |
title | Magnetoactive electrospun hybrid scaffolds based on poly(vinylidene fluoride‐co‐trifluoroethylene) and magnetite particles with varied sizes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetoactive%20electrospun%20hybrid%20scaffolds%20based%20on%20poly(vinylidene%20fluoride%E2%80%90co%E2%80%90trifluoroethylene)%20and%20magnetite%20particles%20with%20varied%20sizes&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Botvin,%20Vladimir%20V.&rft.date=2022-05&rft.volume=62&rft.issue=5&rft.spage=1593&rft.epage=1607&rft.pages=1593-1607&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25947&rft_dat=%3Cgale_proqu%3EA705931968%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654300797&rft_id=info:pmid/&rft_galeid=A705931968&rfr_iscdi=true |