Nonlinear planar vibrations of a cable with a linear damper

This paper minutely studies the effects of the damper on nonlinear behaviors of a cable–damper system. By modeling the damper as a combination of a viscous damper and a linear spring, the primary resonance and subharmonic resonance (1/2 order and 1/3 order) of the cable are explored. The equation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2022-04, Vol.233 (4), p.1393-1412
Hauptverfasser: Su, Xiaoyang, Kang, Houjun, Guo, Tieding, Zhu, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1412
container_issue 4
container_start_page 1393
container_title Acta mechanica
container_volume 233
creator Su, Xiaoyang
Kang, Houjun
Guo, Tieding
Zhu, Weidong
description This paper minutely studies the effects of the damper on nonlinear behaviors of a cable–damper system. By modeling the damper as a combination of a viscous damper and a linear spring, the primary resonance and subharmonic resonance (1/2 order and 1/3 order) of the cable are explored. The equation of motion of the cable is treated by using Galerkin’s method, and the ordinary differential equation (ODE) is obtained subsequently. To solve the ODE, the method of multiple timescales is applied, and the modulation equations corresponding to different types of resonance are derived. Then, the frequency–/force–response curves are acquired by utilizing Newton–Raphson method and pseudo-arclength algorithm, so as to explore the vibration suppression effect from a nonlinear point of view. Meanwhile, the time histories, phase portraits and Poincaré sections are also provided to discuss the influences of the damping and spring stiffness on the nonlinear characteristics of the cable. The results show that the damper has a significant effect on nonlinear resonances of the cable, and the increase in damping (spring stiffness) makes the dual characteristic gradually convert to the softening (hardening) characteristic.
doi_str_mv 10.1007/s00707-022-03171-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2653416091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701332895</galeid><sourcerecordid>A701332895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-b4ac944e7bc61f42e6ce3c08d2e1d4e34f09425e65ac94418e0bcbb8a245ad493</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJR5sWT8viFyx60XNI0-mapZvWpKv4743bBW8yMMMMzzszvIRcMrhmAOompgSKAucUBFOMwhGZsYJVtKiEOiYzAGA0rxSckrMYN6njSrIZuX3ufec8mpANnfGpfLo6mNH1PmZ9m5nMmrrD7MuN76k5oI3ZDhjOyUlruogXhzonb_d3r8tHunp5eFouVtSKvBxpLY2tpERV24K1kmNhUVgoG46skShkC5XkORb5nmMlQm3rujRc5qaRlZiTq2nvEPqPHcZRb_pd8Omk5kUuJCugYom6nqi16VA73_ZjMDZFg1tne4-tS_OFAiYEL6s8CfgksKGPMWCrh-C2JnxrBvrXVT25qpOreu9qynMiJlFMsF9j-PvlH9UPXjV4wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653416091</pqid></control><display><type>article</type><title>Nonlinear planar vibrations of a cable with a linear damper</title><source>SpringerNature Journals</source><creator>Su, Xiaoyang ; Kang, Houjun ; Guo, Tieding ; Zhu, Weidong</creator><creatorcontrib>Su, Xiaoyang ; Kang, Houjun ; Guo, Tieding ; Zhu, Weidong</creatorcontrib><description>This paper minutely studies the effects of the damper on nonlinear behaviors of a cable–damper system. By modeling the damper as a combination of a viscous damper and a linear spring, the primary resonance and subharmonic resonance (1/2 order and 1/3 order) of the cable are explored. The equation of motion of the cable is treated by using Galerkin’s method, and the ordinary differential equation (ODE) is obtained subsequently. To solve the ODE, the method of multiple timescales is applied, and the modulation equations corresponding to different types of resonance are derived. Then, the frequency–/force–response curves are acquired by utilizing Newton–Raphson method and pseudo-arclength algorithm, so as to explore the vibration suppression effect from a nonlinear point of view. Meanwhile, the time histories, phase portraits and Poincaré sections are also provided to discuss the influences of the damping and spring stiffness on the nonlinear characteristics of the cable. The results show that the damper has a significant effect on nonlinear resonances of the cable, and the increase in damping (spring stiffness) makes the dual characteristic gradually convert to the softening (hardening) characteristic.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-022-03171-0</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Analysis ; Classical and Continuum Physics ; Control ; Differential equations ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Equations of motion ; Heat and Mass Transfer ; Newton-Raphson method ; Ordinary differential equations ; Original Paper ; Resonance ; Solid Mechanics ; Stiffness ; Television programs ; Theoretical and Applied Mechanics ; Vibration ; Vibration control ; Viscous damping</subject><ispartof>Acta mechanica, 2022-04, Vol.233 (4), p.1393-1412</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-b4ac944e7bc61f42e6ce3c08d2e1d4e34f09425e65ac94418e0bcbb8a245ad493</citedby><cites>FETCH-LOGICAL-c358t-b4ac944e7bc61f42e6ce3c08d2e1d4e34f09425e65ac94418e0bcbb8a245ad493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-022-03171-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-022-03171-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Su, Xiaoyang</creatorcontrib><creatorcontrib>Kang, Houjun</creatorcontrib><creatorcontrib>Guo, Tieding</creatorcontrib><creatorcontrib>Zhu, Weidong</creatorcontrib><title>Nonlinear planar vibrations of a cable with a linear damper</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>This paper minutely studies the effects of the damper on nonlinear behaviors of a cable–damper system. By modeling the damper as a combination of a viscous damper and a linear spring, the primary resonance and subharmonic resonance (1/2 order and 1/3 order) of the cable are explored. The equation of motion of the cable is treated by using Galerkin’s method, and the ordinary differential equation (ODE) is obtained subsequently. To solve the ODE, the method of multiple timescales is applied, and the modulation equations corresponding to different types of resonance are derived. Then, the frequency–/force–response curves are acquired by utilizing Newton–Raphson method and pseudo-arclength algorithm, so as to explore the vibration suppression effect from a nonlinear point of view. Meanwhile, the time histories, phase portraits and Poincaré sections are also provided to discuss the influences of the damping and spring stiffness on the nonlinear characteristics of the cable. The results show that the damper has a significant effect on nonlinear resonances of the cable, and the increase in damping (spring stiffness) makes the dual characteristic gradually convert to the softening (hardening) characteristic.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Equations of motion</subject><subject>Heat and Mass Transfer</subject><subject>Newton-Raphson method</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Resonance</subject><subject>Solid Mechanics</subject><subject>Stiffness</subject><subject>Television programs</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><subject>Vibration control</subject><subject>Viscous damping</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJR5sWT8viFyx60XNI0-mapZvWpKv4743bBW8yMMMMzzszvIRcMrhmAOompgSKAucUBFOMwhGZsYJVtKiEOiYzAGA0rxSckrMYN6njSrIZuX3ufec8mpANnfGpfLo6mNH1PmZ9m5nMmrrD7MuN76k5oI3ZDhjOyUlruogXhzonb_d3r8tHunp5eFouVtSKvBxpLY2tpERV24K1kmNhUVgoG46skShkC5XkORb5nmMlQm3rujRc5qaRlZiTq2nvEPqPHcZRb_pd8Omk5kUuJCugYom6nqi16VA73_ZjMDZFg1tne4-tS_OFAiYEL6s8CfgksKGPMWCrh-C2JnxrBvrXVT25qpOreu9qynMiJlFMsF9j-PvlH9UPXjV4wg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Su, Xiaoyang</creator><creator>Kang, Houjun</creator><creator>Guo, Tieding</creator><creator>Zhu, Weidong</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20220401</creationdate><title>Nonlinear planar vibrations of a cable with a linear damper</title><author>Su, Xiaoyang ; Kang, Houjun ; Guo, Tieding ; Zhu, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-b4ac944e7bc61f42e6ce3c08d2e1d4e34f09425e65ac94418e0bcbb8a245ad493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Equations of motion</topic><topic>Heat and Mass Transfer</topic><topic>Newton-Raphson method</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Resonance</topic><topic>Solid Mechanics</topic><topic>Stiffness</topic><topic>Television programs</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><topic>Vibration control</topic><topic>Viscous damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Xiaoyang</creatorcontrib><creatorcontrib>Kang, Houjun</creatorcontrib><creatorcontrib>Guo, Tieding</creatorcontrib><creatorcontrib>Zhu, Weidong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Xiaoyang</au><au>Kang, Houjun</au><au>Guo, Tieding</au><au>Zhu, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear planar vibrations of a cable with a linear damper</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>233</volume><issue>4</issue><spage>1393</spage><epage>1412</epage><pages>1393-1412</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>This paper minutely studies the effects of the damper on nonlinear behaviors of a cable–damper system. By modeling the damper as a combination of a viscous damper and a linear spring, the primary resonance and subharmonic resonance (1/2 order and 1/3 order) of the cable are explored. The equation of motion of the cable is treated by using Galerkin’s method, and the ordinary differential equation (ODE) is obtained subsequently. To solve the ODE, the method of multiple timescales is applied, and the modulation equations corresponding to different types of resonance are derived. Then, the frequency–/force–response curves are acquired by utilizing Newton–Raphson method and pseudo-arclength algorithm, so as to explore the vibration suppression effect from a nonlinear point of view. Meanwhile, the time histories, phase portraits and Poincaré sections are also provided to discuss the influences of the damping and spring stiffness on the nonlinear characteristics of the cable. The results show that the damper has a significant effect on nonlinear resonances of the cable, and the increase in damping (spring stiffness) makes the dual characteristic gradually convert to the softening (hardening) characteristic.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-022-03171-0</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2022-04, Vol.233 (4), p.1393-1412
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_2653416091
source SpringerNature Journals
subjects Algorithms
Analysis
Classical and Continuum Physics
Control
Differential equations
Dynamical Systems
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Equations of motion
Heat and Mass Transfer
Newton-Raphson method
Ordinary differential equations
Original Paper
Resonance
Solid Mechanics
Stiffness
Television programs
Theoretical and Applied Mechanics
Vibration
Vibration control
Viscous damping
title Nonlinear planar vibrations of a cable with a linear damper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20planar%20vibrations%20of%20a%20cable%20with%20a%20linear%20damper&rft.jtitle=Acta%20mechanica&rft.au=Su,%20Xiaoyang&rft.date=2022-04-01&rft.volume=233&rft.issue=4&rft.spage=1393&rft.epage=1412&rft.pages=1393-1412&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-022-03171-0&rft_dat=%3Cgale_proqu%3EA701332895%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653416091&rft_id=info:pmid/&rft_galeid=A701332895&rfr_iscdi=true