HNF4A-AS1-encoded small peptide promotes self-renewal and aggressiveness of neuroblastoma stem cells via eEF1A1-repressed SMAD4 transactivation

Cancer stem cells play crucial roles in tumorigenesis and aggressiveness, while regulatory mechanisms in neuroblastoma (NB), a pediatric extracranial malignancy with highest incidence, are still unknown. Herein, a small 51-amino acid peptide (sPEP1) encoded by hepatocyte nuclear factor 4 alpha antis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2022-04, Vol.41 (17), p.2505-2519
Hauptverfasser: Song, Huajie, Wang, Jianqun, Wang, Xiaojing, Yuan, Boling, Li, Dan, Hu, Anpei, Guo, Yanhua, Cai, Shuang, Jin, Shikai, Zhou, Yi, Li, Qilan, Chen, Guo, Gao, Haiyang, Zheng, Liduan, Tong, Qiangsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2519
container_issue 17
container_start_page 2505
container_title Oncogene
container_volume 41
creator Song, Huajie
Wang, Jianqun
Wang, Xiaojing
Yuan, Boling
Li, Dan
Hu, Anpei
Guo, Yanhua
Cai, Shuang
Jin, Shikai
Zhou, Yi
Li, Qilan
Chen, Guo
Gao, Haiyang
Zheng, Liduan
Tong, Qiangsong
description Cancer stem cells play crucial roles in tumorigenesis and aggressiveness, while regulatory mechanisms in neuroblastoma (NB), a pediatric extracranial malignancy with highest incidence, are still unknown. Herein, a small 51-amino acid peptide (sPEP1) encoded by hepatocyte nuclear factor 4 alpha antisense RNA 1 ( HNF4A-AS1 ) was identified in tumor tissues and cells, which facilitated self-renewal and aggressiveness of NB stem cells. MiRNA-409-5p interacted with HNF4A-AS1 to facilitate sPEP1 translation via recruiting eukaryotic translation initiation factor 3 subunit G, while sPEP1 repressed serum deprivation-induced senescence and promoted sphere formation, growth, or metastasis of NB stem cells. Mechanistically, sPEP1 directly interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to facilitate its binding to SMAD family member 4 (SMAD4), resulting in repression of SMAD4 transactivation and transcriptional upregulation of stem cell genes associated with tumor progression. Rescue experiments revealed that sPEP1 exerted oncogenic roles via facilitating physical interaction between eEF1A1 and SMAD4. Notably, knockdown of sPEP1 significantly repressed the self-renewal and metastasis of NB stem cells in vivo. High sPEP1 or eEF1A1 levels in clinical NB tissues were linked to poor patients’ survival. These findings suggest that HNF4A-AS1 -encoded sPEP1 promotes self-renewal and aggressive features of NB stem cells by eEF1A1-repressed SMAD4 transactivation.
doi_str_mv 10.1038/s41388-022-02271-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653413690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653413690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b2b8e0424d686c60ae28af120922563fb6680b3d5b2a8f45d9f9e3ed06d26c4f3</originalsourceid><addsrcrecordid>eNp9UcluFDEQtRCIDIEf4IAscTZ4H_exFTIEKcAhcLbc7fKoo95weQbxFfwyHibAjUPJUvktqvcIeSn4G8GVe4taKOcYl_I0W8H0I7IRemuZMY1-TDa8MZw1UskL8gzxnnO-bbh8Si6UUcJpLTfk582nnW5ZeycYzP0SIVKcwjjSFdYyRKBrXqalAFKEMbEMM3wPIw1zpGG_z4A4HOsOkS6JznDISzcGLMsUKBaYaA_jiPQ4BArXO9GKqrCeWNXn7mP7TtOSw4yhL8MxlGGZn5MnKYwILx7eS_J1d_3l6obdfn7_4aq9Zb3amsI62TngWupone0tDyBdSELyRkpjVeqsdbxT0XQyuKRNbFIDCiK3UdpeJ3VJXp91633fDoDF3y-HPFdLL61RNVnb8IqSZ1SfF8QMya95mEL-4QX3pw78uQNf8_e_O_C6kl49SB-6CeJfyp_QK0CdAVi_5j3kf97_kf0FCT2Stw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653413690</pqid></control><display><type>article</type><title>HNF4A-AS1-encoded small peptide promotes self-renewal and aggressiveness of neuroblastoma stem cells via eEF1A1-repressed SMAD4 transactivation</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Song, Huajie ; Wang, Jianqun ; Wang, Xiaojing ; Yuan, Boling ; Li, Dan ; Hu, Anpei ; Guo, Yanhua ; Cai, Shuang ; Jin, Shikai ; Zhou, Yi ; Li, Qilan ; Chen, Guo ; Gao, Haiyang ; Zheng, Liduan ; Tong, Qiangsong</creator><creatorcontrib>Song, Huajie ; Wang, Jianqun ; Wang, Xiaojing ; Yuan, Boling ; Li, Dan ; Hu, Anpei ; Guo, Yanhua ; Cai, Shuang ; Jin, Shikai ; Zhou, Yi ; Li, Qilan ; Chen, Guo ; Gao, Haiyang ; Zheng, Liduan ; Tong, Qiangsong</creatorcontrib><description>Cancer stem cells play crucial roles in tumorigenesis and aggressiveness, while regulatory mechanisms in neuroblastoma (NB), a pediatric extracranial malignancy with highest incidence, are still unknown. Herein, a small 51-amino acid peptide (sPEP1) encoded by hepatocyte nuclear factor 4 alpha antisense RNA 1 ( HNF4A-AS1 ) was identified in tumor tissues and cells, which facilitated self-renewal and aggressiveness of NB stem cells. MiRNA-409-5p interacted with HNF4A-AS1 to facilitate sPEP1 translation via recruiting eukaryotic translation initiation factor 3 subunit G, while sPEP1 repressed serum deprivation-induced senescence and promoted sphere formation, growth, or metastasis of NB stem cells. Mechanistically, sPEP1 directly interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to facilitate its binding to SMAD family member 4 (SMAD4), resulting in repression of SMAD4 transactivation and transcriptional upregulation of stem cell genes associated with tumor progression. Rescue experiments revealed that sPEP1 exerted oncogenic roles via facilitating physical interaction between eEF1A1 and SMAD4. Notably, knockdown of sPEP1 significantly repressed the self-renewal and metastasis of NB stem cells in vivo. High sPEP1 or eEF1A1 levels in clinical NB tissues were linked to poor patients’ survival. These findings suggest that HNF4A-AS1 -encoded sPEP1 promotes self-renewal and aggressive features of NB stem cells by eEF1A1-repressed SMAD4 transactivation.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-022-02271-4</identifier><identifier>PMID: 35318442</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/109 ; 13/31 ; 13/51 ; 13/89 ; 14/19 ; 38/39 ; 38/77 ; 631/67/2332 ; 631/67/395 ; 64/60 ; Antisense RNA ; Apoptosis ; Carcinogenesis - genetics ; Cell Biology ; Cell Line, Tumor ; Cell self-renewal ; Child ; Gene Expression Regulation, Neoplastic ; Hepatocyte nuclear factor 4 ; Hepatocyte Nuclear Factor 4 - genetics ; Hepatocyte Nuclear Factor 4 - metabolism ; Human Genetics ; Humans ; Internal Medicine ; Malignancy ; Medicine ; Medicine &amp; Public Health ; Metastases ; Metastasis ; MicroRNAs - genetics ; miRNA ; Neuroblastoma ; Neuroblastoma - pathology ; Oncology ; Pediatrics ; Peptide Elongation Factor 1 - genetics ; Peptide Elongation Factor 1 - metabolism ; Peptides ; RNA, Antisense ; RNA, Long Noncoding - genetics ; Senescence ; Smad protein ; Smad4 protein ; Smad4 Protein - genetics ; Smad4 Protein - metabolism ; Stem cells ; Stem Cells - metabolism ; Transcription ; Transcriptional Activation ; Translation ; Translation elongation ; Tumorigenesis</subject><ispartof>Oncogene, 2022-04, Vol.41 (17), p.2505-2519</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-b2b8e0424d686c60ae28af120922563fb6680b3d5b2a8f45d9f9e3ed06d26c4f3</citedby><cites>FETCH-LOGICAL-c375t-b2b8e0424d686c60ae28af120922563fb6680b3d5b2a8f45d9f9e3ed06d26c4f3</cites><orcidid>0000-0002-2615-6404 ; 0000-0001-5566-673X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35318442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Huajie</creatorcontrib><creatorcontrib>Wang, Jianqun</creatorcontrib><creatorcontrib>Wang, Xiaojing</creatorcontrib><creatorcontrib>Yuan, Boling</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Hu, Anpei</creatorcontrib><creatorcontrib>Guo, Yanhua</creatorcontrib><creatorcontrib>Cai, Shuang</creatorcontrib><creatorcontrib>Jin, Shikai</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Li, Qilan</creatorcontrib><creatorcontrib>Chen, Guo</creatorcontrib><creatorcontrib>Gao, Haiyang</creatorcontrib><creatorcontrib>Zheng, Liduan</creatorcontrib><creatorcontrib>Tong, Qiangsong</creatorcontrib><title>HNF4A-AS1-encoded small peptide promotes self-renewal and aggressiveness of neuroblastoma stem cells via eEF1A1-repressed SMAD4 transactivation</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Cancer stem cells play crucial roles in tumorigenesis and aggressiveness, while regulatory mechanisms in neuroblastoma (NB), a pediatric extracranial malignancy with highest incidence, are still unknown. Herein, a small 51-amino acid peptide (sPEP1) encoded by hepatocyte nuclear factor 4 alpha antisense RNA 1 ( HNF4A-AS1 ) was identified in tumor tissues and cells, which facilitated self-renewal and aggressiveness of NB stem cells. MiRNA-409-5p interacted with HNF4A-AS1 to facilitate sPEP1 translation via recruiting eukaryotic translation initiation factor 3 subunit G, while sPEP1 repressed serum deprivation-induced senescence and promoted sphere formation, growth, or metastasis of NB stem cells. Mechanistically, sPEP1 directly interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to facilitate its binding to SMAD family member 4 (SMAD4), resulting in repression of SMAD4 transactivation and transcriptional upregulation of stem cell genes associated with tumor progression. Rescue experiments revealed that sPEP1 exerted oncogenic roles via facilitating physical interaction between eEF1A1 and SMAD4. Notably, knockdown of sPEP1 significantly repressed the self-renewal and metastasis of NB stem cells in vivo. High sPEP1 or eEF1A1 levels in clinical NB tissues were linked to poor patients’ survival. These findings suggest that HNF4A-AS1 -encoded sPEP1 promotes self-renewal and aggressive features of NB stem cells by eEF1A1-repressed SMAD4 transactivation.</description><subject>13/1</subject><subject>13/109</subject><subject>13/31</subject><subject>13/51</subject><subject>13/89</subject><subject>14/19</subject><subject>38/39</subject><subject>38/77</subject><subject>631/67/2332</subject><subject>631/67/395</subject><subject>64/60</subject><subject>Antisense RNA</subject><subject>Apoptosis</subject><subject>Carcinogenesis - genetics</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell self-renewal</subject><subject>Child</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Hepatocyte nuclear factor 4</subject><subject>Hepatocyte Nuclear Factor 4 - genetics</subject><subject>Hepatocyte Nuclear Factor 4 - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Malignancy</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Neuroblastoma</subject><subject>Neuroblastoma - pathology</subject><subject>Oncology</subject><subject>Pediatrics</subject><subject>Peptide Elongation Factor 1 - genetics</subject><subject>Peptide Elongation Factor 1 - metabolism</subject><subject>Peptides</subject><subject>RNA, Antisense</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Senescence</subject><subject>Smad protein</subject><subject>Smad4 protein</subject><subject>Smad4 Protein - genetics</subject><subject>Smad4 Protein - metabolism</subject><subject>Stem cells</subject><subject>Stem Cells - metabolism</subject><subject>Transcription</subject><subject>Transcriptional Activation</subject><subject>Translation</subject><subject>Translation elongation</subject><subject>Tumorigenesis</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UcluFDEQtRCIDIEf4IAscTZ4H_exFTIEKcAhcLbc7fKoo95weQbxFfwyHibAjUPJUvktqvcIeSn4G8GVe4taKOcYl_I0W8H0I7IRemuZMY1-TDa8MZw1UskL8gzxnnO-bbh8Si6UUcJpLTfk582nnW5ZeycYzP0SIVKcwjjSFdYyRKBrXqalAFKEMbEMM3wPIw1zpGG_z4A4HOsOkS6JznDISzcGLMsUKBaYaA_jiPQ4BArXO9GKqrCeWNXn7mP7TtOSw4yhL8MxlGGZn5MnKYwILx7eS_J1d_3l6obdfn7_4aq9Zb3amsI62TngWupone0tDyBdSELyRkpjVeqsdbxT0XQyuKRNbFIDCiK3UdpeJ3VJXp91633fDoDF3y-HPFdLL61RNVnb8IqSZ1SfF8QMya95mEL-4QX3pw78uQNf8_e_O_C6kl49SB-6CeJfyp_QK0CdAVi_5j3kf97_kf0FCT2Stw</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>Song, Huajie</creator><creator>Wang, Jianqun</creator><creator>Wang, Xiaojing</creator><creator>Yuan, Boling</creator><creator>Li, Dan</creator><creator>Hu, Anpei</creator><creator>Guo, Yanhua</creator><creator>Cai, Shuang</creator><creator>Jin, Shikai</creator><creator>Zhou, Yi</creator><creator>Li, Qilan</creator><creator>Chen, Guo</creator><creator>Gao, Haiyang</creator><creator>Zheng, Liduan</creator><creator>Tong, Qiangsong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-2615-6404</orcidid><orcidid>https://orcid.org/0000-0001-5566-673X</orcidid></search><sort><creationdate>20220422</creationdate><title>HNF4A-AS1-encoded small peptide promotes self-renewal and aggressiveness of neuroblastoma stem cells via eEF1A1-repressed SMAD4 transactivation</title><author>Song, Huajie ; Wang, Jianqun ; Wang, Xiaojing ; Yuan, Boling ; Li, Dan ; Hu, Anpei ; Guo, Yanhua ; Cai, Shuang ; Jin, Shikai ; Zhou, Yi ; Li, Qilan ; Chen, Guo ; Gao, Haiyang ; Zheng, Liduan ; Tong, Qiangsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b2b8e0424d686c60ae28af120922563fb6680b3d5b2a8f45d9f9e3ed06d26c4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/1</topic><topic>13/109</topic><topic>13/31</topic><topic>13/51</topic><topic>13/89</topic><topic>14/19</topic><topic>38/39</topic><topic>38/77</topic><topic>631/67/2332</topic><topic>631/67/395</topic><topic>64/60</topic><topic>Antisense RNA</topic><topic>Apoptosis</topic><topic>Carcinogenesis - genetics</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell self-renewal</topic><topic>Child</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Hepatocyte nuclear factor 4</topic><topic>Hepatocyte Nuclear Factor 4 - genetics</topic><topic>Hepatocyte Nuclear Factor 4 - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Malignancy</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Neuroblastoma</topic><topic>Neuroblastoma - pathology</topic><topic>Oncology</topic><topic>Pediatrics</topic><topic>Peptide Elongation Factor 1 - genetics</topic><topic>Peptide Elongation Factor 1 - metabolism</topic><topic>Peptides</topic><topic>RNA, Antisense</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Senescence</topic><topic>Smad protein</topic><topic>Smad4 protein</topic><topic>Smad4 Protein - genetics</topic><topic>Smad4 Protein - metabolism</topic><topic>Stem cells</topic><topic>Stem Cells - metabolism</topic><topic>Transcription</topic><topic>Transcriptional Activation</topic><topic>Translation</topic><topic>Translation elongation</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Huajie</creatorcontrib><creatorcontrib>Wang, Jianqun</creatorcontrib><creatorcontrib>Wang, Xiaojing</creatorcontrib><creatorcontrib>Yuan, Boling</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Hu, Anpei</creatorcontrib><creatorcontrib>Guo, Yanhua</creatorcontrib><creatorcontrib>Cai, Shuang</creatorcontrib><creatorcontrib>Jin, Shikai</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Li, Qilan</creatorcontrib><creatorcontrib>Chen, Guo</creatorcontrib><creatorcontrib>Gao, Haiyang</creatorcontrib><creatorcontrib>Zheng, Liduan</creatorcontrib><creatorcontrib>Tong, Qiangsong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Huajie</au><au>Wang, Jianqun</au><au>Wang, Xiaojing</au><au>Yuan, Boling</au><au>Li, Dan</au><au>Hu, Anpei</au><au>Guo, Yanhua</au><au>Cai, Shuang</au><au>Jin, Shikai</au><au>Zhou, Yi</au><au>Li, Qilan</au><au>Chen, Guo</au><au>Gao, Haiyang</au><au>Zheng, Liduan</au><au>Tong, Qiangsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HNF4A-AS1-encoded small peptide promotes self-renewal and aggressiveness of neuroblastoma stem cells via eEF1A1-repressed SMAD4 transactivation</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2022-04-22</date><risdate>2022</risdate><volume>41</volume><issue>17</issue><spage>2505</spage><epage>2519</epage><pages>2505-2519</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Cancer stem cells play crucial roles in tumorigenesis and aggressiveness, while regulatory mechanisms in neuroblastoma (NB), a pediatric extracranial malignancy with highest incidence, are still unknown. Herein, a small 51-amino acid peptide (sPEP1) encoded by hepatocyte nuclear factor 4 alpha antisense RNA 1 ( HNF4A-AS1 ) was identified in tumor tissues and cells, which facilitated self-renewal and aggressiveness of NB stem cells. MiRNA-409-5p interacted with HNF4A-AS1 to facilitate sPEP1 translation via recruiting eukaryotic translation initiation factor 3 subunit G, while sPEP1 repressed serum deprivation-induced senescence and promoted sphere formation, growth, or metastasis of NB stem cells. Mechanistically, sPEP1 directly interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to facilitate its binding to SMAD family member 4 (SMAD4), resulting in repression of SMAD4 transactivation and transcriptional upregulation of stem cell genes associated with tumor progression. Rescue experiments revealed that sPEP1 exerted oncogenic roles via facilitating physical interaction between eEF1A1 and SMAD4. Notably, knockdown of sPEP1 significantly repressed the self-renewal and metastasis of NB stem cells in vivo. High sPEP1 or eEF1A1 levels in clinical NB tissues were linked to poor patients’ survival. These findings suggest that HNF4A-AS1 -encoded sPEP1 promotes self-renewal and aggressive features of NB stem cells by eEF1A1-repressed SMAD4 transactivation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35318442</pmid><doi>10.1038/s41388-022-02271-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2615-6404</orcidid><orcidid>https://orcid.org/0000-0001-5566-673X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2022-04, Vol.41 (17), p.2505-2519
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_journals_2653413690
source MEDLINE; Alma/SFX Local Collection
subjects 13/1
13/109
13/31
13/51
13/89
14/19
38/39
38/77
631/67/2332
631/67/395
64/60
Antisense RNA
Apoptosis
Carcinogenesis - genetics
Cell Biology
Cell Line, Tumor
Cell self-renewal
Child
Gene Expression Regulation, Neoplastic
Hepatocyte nuclear factor 4
Hepatocyte Nuclear Factor 4 - genetics
Hepatocyte Nuclear Factor 4 - metabolism
Human Genetics
Humans
Internal Medicine
Malignancy
Medicine
Medicine & Public Health
Metastases
Metastasis
MicroRNAs - genetics
miRNA
Neuroblastoma
Neuroblastoma - pathology
Oncology
Pediatrics
Peptide Elongation Factor 1 - genetics
Peptide Elongation Factor 1 - metabolism
Peptides
RNA, Antisense
RNA, Long Noncoding - genetics
Senescence
Smad protein
Smad4 protein
Smad4 Protein - genetics
Smad4 Protein - metabolism
Stem cells
Stem Cells - metabolism
Transcription
Transcriptional Activation
Translation
Translation elongation
Tumorigenesis
title HNF4A-AS1-encoded small peptide promotes self-renewal and aggressiveness of neuroblastoma stem cells via eEF1A1-repressed SMAD4 transactivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HNF4A-AS1-encoded%20small%20peptide%20promotes%20self-renewal%20and%20aggressiveness%20of%20neuroblastoma%20stem%20cells%20via%20eEF1A1-repressed%20SMAD4%20transactivation&rft.jtitle=Oncogene&rft.au=Song,%20Huajie&rft.date=2022-04-22&rft.volume=41&rft.issue=17&rft.spage=2505&rft.epage=2519&rft.pages=2505-2519&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-022-02271-4&rft_dat=%3Cproquest_cross%3E2653413690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653413690&rft_id=info:pmid/35318442&rfr_iscdi=true