Low-latency readout electronics for dynamic superconducting quantum computing

Dynamic quantum computing can support quantum error correction circuits to build a large general-purpose quantum computer, which requires electronic instruments to perform the closed-loop operation of readout, processing, and control within 1% of the qubit coherence time. In this paper, we present l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2022-04, Vol.12 (4), p.045024-045024-8
Hauptverfasser: Guo, Cheng, Lin, Jin, Han, Lian-Chen, Li, Na, Sun, Li-Hua, Liang, Fu-Tian, Li, Dong-Dong, Li, Yu-Huai, Gong, Ming, Xu, Yu, Liao, Sheng-Kai, Peng, Cheng-Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 045024-8
container_issue 4
container_start_page 045024
container_title AIP advances
container_volume 12
creator Guo, Cheng
Lin, Jin
Han, Lian-Chen
Li, Na
Sun, Li-Hua
Liang, Fu-Tian
Li, Dong-Dong
Li, Yu-Huai
Gong, Ming
Xu, Yu
Liao, Sheng-Kai
Peng, Cheng-Zhi
description Dynamic quantum computing can support quantum error correction circuits to build a large general-purpose quantum computer, which requires electronic instruments to perform the closed-loop operation of readout, processing, and control within 1% of the qubit coherence time. In this paper, we present low-latency readout electronics for dynamic superconducting quantum computing. The readout electronics use a low-latency analog-to-digital converter to capture analog signals, a field-programmable gate array (FPGA) to process digital signals, and the general I/O resources of the FPGA to forward the readout results. Running an algorithm based on the design of multichannel parallelism and single instruction multiple data on an FPGA, the readout electronics achieve a readout latency of 40 ns from the last sample input to the readout valid output. The feedback data link for cross-instrument communication shows a communication latency of 48 ns when 16 bits of data are transmitted over a 2 m-length cable using a homologous clock to drive the transceiver. With codeword-based triggering mechanisms, readout electronics can be used in dynamic superconducting quantum computing.
doi_str_mv 10.1063/5.0088879
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2653388635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e2311e5259164651a594eb476e54dd85</doaj_id><sourcerecordid>2653388635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-49b9162e63c9d18b4ee97a213830fa9220108a19da43b285c3b59048ed4ebdd33</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWLQL_8GAK4WpeU6TpRQfhYobXYdMcqdMmZlMk4zSf-_UFnXt3dzL4eOcw0XoiuAZwQW7EzOMpZRzdYImlAiZM0qL0z_3OZrGuMHjcEWw5BP0svKfeWMSdHaXBTDODymDBmwKvqttzCofMrfrTFvbLA49BOs7N9hUd-tsO5guDW1mfdsPe-USnVWmiTA97gv0_vjwtnjOV69Py8X9KrecypRzVSpSUCiYVY7IkgOouaGESYYroyjFYzlDlDOclVQKy0qhMJfgOJTOMXaBlgdf581G96FuTdhpb2r9Lfiw1iak2jaggTJCQFAxJvJCECPUaMLnBQjunBSj1_XBqw9-O0BMeuOH0I31NS0EY1IWbE_dHCgbfIwBqp9UgvX--Vro4_NH9vbARlsnk2rf_Q_-8OEX1L2r2BcaG5GV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653388635</pqid></control><display><type>article</type><title>Low-latency readout electronics for dynamic superconducting quantum computing</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Guo, Cheng ; Lin, Jin ; Han, Lian-Chen ; Li, Na ; Sun, Li-Hua ; Liang, Fu-Tian ; Li, Dong-Dong ; Li, Yu-Huai ; Gong, Ming ; Xu, Yu ; Liao, Sheng-Kai ; Peng, Cheng-Zhi</creator><creatorcontrib>Guo, Cheng ; Lin, Jin ; Han, Lian-Chen ; Li, Na ; Sun, Li-Hua ; Liang, Fu-Tian ; Li, Dong-Dong ; Li, Yu-Huai ; Gong, Ming ; Xu, Yu ; Liao, Sheng-Kai ; Peng, Cheng-Zhi</creatorcontrib><description>Dynamic quantum computing can support quantum error correction circuits to build a large general-purpose quantum computer, which requires electronic instruments to perform the closed-loop operation of readout, processing, and control within 1% of the qubit coherence time. In this paper, we present low-latency readout electronics for dynamic superconducting quantum computing. The readout electronics use a low-latency analog-to-digital converter to capture analog signals, a field-programmable gate array (FPGA) to process digital signals, and the general I/O resources of the FPGA to forward the readout results. Running an algorithm based on the design of multichannel parallelism and single instruction multiple data on an FPGA, the readout electronics achieve a readout latency of 40 ns from the last sample input to the readout valid output. The feedback data link for cross-instrument communication shows a communication latency of 48 ns when 16 bits of data are transmitted over a 2 m-length cable using a homologous clock to drive the transceiver. With codeword-based triggering mechanisms, readout electronics can be used in dynamic superconducting quantum computing.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0088879</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Analog to digital converters ; Control equipment ; Data links ; Electronics ; Error correction ; Field programmable gate arrays ; Homology ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Signal processing ; Superconductivity</subject><ispartof>AIP advances, 2022-04, Vol.12 (4), p.045024-045024-8</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-49b9162e63c9d18b4ee97a213830fa9220108a19da43b285c3b59048ed4ebdd33</citedby><cites>FETCH-LOGICAL-c428t-49b9162e63c9d18b4ee97a213830fa9220108a19da43b285c3b59048ed4ebdd33</cites><orcidid>0000-0001-9843-0559 ; 0000-0002-4184-9583 ; 0000-0001-5262-7524 ; 0000-0002-2672-5910 ; 0000-0003-1185-4805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Guo, Cheng</creatorcontrib><creatorcontrib>Lin, Jin</creatorcontrib><creatorcontrib>Han, Lian-Chen</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Sun, Li-Hua</creatorcontrib><creatorcontrib>Liang, Fu-Tian</creatorcontrib><creatorcontrib>Li, Dong-Dong</creatorcontrib><creatorcontrib>Li, Yu-Huai</creatorcontrib><creatorcontrib>Gong, Ming</creatorcontrib><creatorcontrib>Xu, Yu</creatorcontrib><creatorcontrib>Liao, Sheng-Kai</creatorcontrib><creatorcontrib>Peng, Cheng-Zhi</creatorcontrib><title>Low-latency readout electronics for dynamic superconducting quantum computing</title><title>AIP advances</title><description>Dynamic quantum computing can support quantum error correction circuits to build a large general-purpose quantum computer, which requires electronic instruments to perform the closed-loop operation of readout, processing, and control within 1% of the qubit coherence time. In this paper, we present low-latency readout electronics for dynamic superconducting quantum computing. The readout electronics use a low-latency analog-to-digital converter to capture analog signals, a field-programmable gate array (FPGA) to process digital signals, and the general I/O resources of the FPGA to forward the readout results. Running an algorithm based on the design of multichannel parallelism and single instruction multiple data on an FPGA, the readout electronics achieve a readout latency of 40 ns from the last sample input to the readout valid output. The feedback data link for cross-instrument communication shows a communication latency of 48 ns when 16 bits of data are transmitted over a 2 m-length cable using a homologous clock to drive the transceiver. With codeword-based triggering mechanisms, readout electronics can be used in dynamic superconducting quantum computing.</description><subject>Algorithms</subject><subject>Analog to digital converters</subject><subject>Control equipment</subject><subject>Data links</subject><subject>Electronics</subject><subject>Error correction</subject><subject>Field programmable gate arrays</subject><subject>Homology</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Signal processing</subject><subject>Superconductivity</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkEtLAzEUhYMoWLQL_8GAK4WpeU6TpRQfhYobXYdMcqdMmZlMk4zSf-_UFnXt3dzL4eOcw0XoiuAZwQW7EzOMpZRzdYImlAiZM0qL0z_3OZrGuMHjcEWw5BP0svKfeWMSdHaXBTDODymDBmwKvqttzCofMrfrTFvbLA49BOs7N9hUd-tsO5guDW1mfdsPe-USnVWmiTA97gv0_vjwtnjOV69Py8X9KrecypRzVSpSUCiYVY7IkgOouaGESYYroyjFYzlDlDOclVQKy0qhMJfgOJTOMXaBlgdf581G96FuTdhpb2r9Lfiw1iak2jaggTJCQFAxJvJCECPUaMLnBQjunBSj1_XBqw9-O0BMeuOH0I31NS0EY1IWbE_dHCgbfIwBqp9UgvX--Vro4_NH9vbARlsnk2rf_Q_-8OEX1L2r2BcaG5GV</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Guo, Cheng</creator><creator>Lin, Jin</creator><creator>Han, Lian-Chen</creator><creator>Li, Na</creator><creator>Sun, Li-Hua</creator><creator>Liang, Fu-Tian</creator><creator>Li, Dong-Dong</creator><creator>Li, Yu-Huai</creator><creator>Gong, Ming</creator><creator>Xu, Yu</creator><creator>Liao, Sheng-Kai</creator><creator>Peng, Cheng-Zhi</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9843-0559</orcidid><orcidid>https://orcid.org/0000-0002-4184-9583</orcidid><orcidid>https://orcid.org/0000-0001-5262-7524</orcidid><orcidid>https://orcid.org/0000-0002-2672-5910</orcidid><orcidid>https://orcid.org/0000-0003-1185-4805</orcidid></search><sort><creationdate>20220401</creationdate><title>Low-latency readout electronics for dynamic superconducting quantum computing</title><author>Guo, Cheng ; Lin, Jin ; Han, Lian-Chen ; Li, Na ; Sun, Li-Hua ; Liang, Fu-Tian ; Li, Dong-Dong ; Li, Yu-Huai ; Gong, Ming ; Xu, Yu ; Liao, Sheng-Kai ; Peng, Cheng-Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-49b9162e63c9d18b4ee97a213830fa9220108a19da43b285c3b59048ed4ebdd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analog to digital converters</topic><topic>Control equipment</topic><topic>Data links</topic><topic>Electronics</topic><topic>Error correction</topic><topic>Field programmable gate arrays</topic><topic>Homology</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Signal processing</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Cheng</creatorcontrib><creatorcontrib>Lin, Jin</creatorcontrib><creatorcontrib>Han, Lian-Chen</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Sun, Li-Hua</creatorcontrib><creatorcontrib>Liang, Fu-Tian</creatorcontrib><creatorcontrib>Li, Dong-Dong</creatorcontrib><creatorcontrib>Li, Yu-Huai</creatorcontrib><creatorcontrib>Gong, Ming</creatorcontrib><creatorcontrib>Xu, Yu</creatorcontrib><creatorcontrib>Liao, Sheng-Kai</creatorcontrib><creatorcontrib>Peng, Cheng-Zhi</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Cheng</au><au>Lin, Jin</au><au>Han, Lian-Chen</au><au>Li, Na</au><au>Sun, Li-Hua</au><au>Liang, Fu-Tian</au><au>Li, Dong-Dong</au><au>Li, Yu-Huai</au><au>Gong, Ming</au><au>Xu, Yu</au><au>Liao, Sheng-Kai</au><au>Peng, Cheng-Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-latency readout electronics for dynamic superconducting quantum computing</atitle><jtitle>AIP advances</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>12</volume><issue>4</issue><spage>045024</spage><epage>045024-8</epage><pages>045024-045024-8</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Dynamic quantum computing can support quantum error correction circuits to build a large general-purpose quantum computer, which requires electronic instruments to perform the closed-loop operation of readout, processing, and control within 1% of the qubit coherence time. In this paper, we present low-latency readout electronics for dynamic superconducting quantum computing. The readout electronics use a low-latency analog-to-digital converter to capture analog signals, a field-programmable gate array (FPGA) to process digital signals, and the general I/O resources of the FPGA to forward the readout results. Running an algorithm based on the design of multichannel parallelism and single instruction multiple data on an FPGA, the readout electronics achieve a readout latency of 40 ns from the last sample input to the readout valid output. The feedback data link for cross-instrument communication shows a communication latency of 48 ns when 16 bits of data are transmitted over a 2 m-length cable using a homologous clock to drive the transceiver. With codeword-based triggering mechanisms, readout electronics can be used in dynamic superconducting quantum computing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0088879</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9843-0559</orcidid><orcidid>https://orcid.org/0000-0002-4184-9583</orcidid><orcidid>https://orcid.org/0000-0001-5262-7524</orcidid><orcidid>https://orcid.org/0000-0002-2672-5910</orcidid><orcidid>https://orcid.org/0000-0003-1185-4805</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2022-04, Vol.12 (4), p.045024-045024-8
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2653388635
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Analog to digital converters
Control equipment
Data links
Electronics
Error correction
Field programmable gate arrays
Homology
Quantum computers
Quantum computing
Qubits (quantum computing)
Signal processing
Superconductivity
title Low-latency readout electronics for dynamic superconducting quantum computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-latency%20readout%20electronics%20for%20dynamic%20superconducting%20quantum%20computing&rft.jtitle=AIP%20advances&rft.au=Guo,%20Cheng&rft.date=2022-04-01&rft.volume=12&rft.issue=4&rft.spage=045024&rft.epage=045024-8&rft.pages=045024-045024-8&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0088879&rft_dat=%3Cproquest_doaj_%3E2653388635%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653388635&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_e2311e5259164651a594eb476e54dd85&rfr_iscdi=true