Rhenium carbides phase diagram under pressure and explaining why WC-type ReC does not exist

The stability of W–C compounds (WC)-type ReC has been controversial for many years. Here, based on ab initio algorithm, we systematically searched for stable structures in the rhenium–carbon (Re–C) system at 0–300 gigapascal (GPa) pressure and analyzed the phase diagram within the pressure range. On...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-04, Vol.131 (16)
Hauptverfasser: Hu, Peiju, Xie, Xing, Bai, Lingling, Zhang, Runqing, Zhang, Xunjiang, Sun, Jiaying, Dong, Huafeng, Wen, Minru, Wu, Fugen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title Journal of applied physics
container_volume 131
creator Hu, Peiju
Xie, Xing
Bai, Lingling
Zhang, Runqing
Zhang, Xunjiang
Sun, Jiaying
Dong, Huafeng
Wen, Minru
Wu, Fugen
description The stability of W–C compounds (WC)-type ReC has been controversial for many years. Here, based on ab initio algorithm, we systematically searched for stable structures in the rhenium–carbon (Re–C) system at 0–300 gigapascal (GPa) pressure and analyzed the phase diagram within the pressure range. Only P63/mmc-Re2C, C2/m-Re3C, P21/m-Re4C, and C2/m-Re5C2 phases are found to be stable under 0–300 GPa, while WC-type ReC has high enthalpy and does not appear in the phase diagram. We also discussed the stability of WC-type ReC. Among these structures, C2/m-Re3C, P21/m-Re4C, and C2/m-Re5C2 are hitherto unknown structures, which could maintain dynamic and mechanical stability under ambient pressure. In addition, through the analysis of the structural and mechanical properties, P63/mmc-Re2C is the hardest metal among them with 31.5 GPa Vickers hardness at 0 GPa, and the metastable P 6 ¯ m 2-Re5C3 has the second-highest hardness (29.3 GPa), both of which exceed the hardness of TiN (18.7 GPa), the commercial material used for cutting tools. The study of Re–C compounds with high hardness provides theoretical guidance for further experimental research.
doi_str_mv 10.1063/5.0087688
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653388351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653388351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-90de246ead04d3cf92e1ceb99fa93f284509865f1583df8479309767435349423</originalsourceid><addsrcrecordid>eNp90E9LwzAYx_EgCs7pwXcQ8KTQmTRNmxyl-A8GwlA8eAhZ82TL2NKapOrevZWJHgRPz-XD94EfQqeUTCgp2SWfECKqUog9NKJEyKzinOyjESE5zYSs5CE6inFFCKWCyRF6mS3Bu36DGx3mzkDE3VJHwMbpRdAb3HsDAXcBYuwDYO0Nho9urZ13foHfl1v8XGdp2wGeQY1NOwR8mwbjYjpGB1avI5x83zF6url-rO-y6cPtfX01zZpcVCmTxEBelKANKQxrrMyBNjCX0mrJbC4KTqQouaVcMGNFUUlGZFVWBeOskEXOxuhs1-1C-9pDTGrV9sEPL1VecsaEYJwO6nynmtDGGMCqLriNDltFifraTnH1vd1gL3Y2Ni7p5Fr_g9_a8AtVZ-x_-G_5E-N7e-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653388351</pqid></control><display><type>article</type><title>Rhenium carbides phase diagram under pressure and explaining why WC-type ReC does not exist</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hu, Peiju ; Xie, Xing ; Bai, Lingling ; Zhang, Runqing ; Zhang, Xunjiang ; Sun, Jiaying ; Dong, Huafeng ; Wen, Minru ; Wu, Fugen</creator><creatorcontrib>Hu, Peiju ; Xie, Xing ; Bai, Lingling ; Zhang, Runqing ; Zhang, Xunjiang ; Sun, Jiaying ; Dong, Huafeng ; Wen, Minru ; Wu, Fugen</creatorcontrib><description>The stability of W–C compounds (WC)-type ReC has been controversial for many years. Here, based on ab initio algorithm, we systematically searched for stable structures in the rhenium–carbon (Re–C) system at 0–300 gigapascal (GPa) pressure and analyzed the phase diagram within the pressure range. Only P63/mmc-Re2C, C2/m-Re3C, P21/m-Re4C, and C2/m-Re5C2 phases are found to be stable under 0–300 GPa, while WC-type ReC has high enthalpy and does not appear in the phase diagram. We also discussed the stability of WC-type ReC. Among these structures, C2/m-Re3C, P21/m-Re4C, and C2/m-Re5C2 are hitherto unknown structures, which could maintain dynamic and mechanical stability under ambient pressure. In addition, through the analysis of the structural and mechanical properties, P63/mmc-Re2C is the hardest metal among them with 31.5 GPa Vickers hardness at 0 GPa, and the metastable P 6 ¯ m 2-Re5C3 has the second-highest hardness (29.3 GPa), both of which exceed the hardness of TiN (18.7 GPa), the commercial material used for cutting tools. The study of Re–C compounds with high hardness provides theoretical guidance for further experimental research.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0087688</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Applied physics ; Diamond pyramid hardness ; Dynamic stability ; Enthalpy ; Mechanical properties ; Phase diagrams ; Pressure ; Rhenium ; Stability analysis ; Tungsten carbide</subject><ispartof>Journal of applied physics, 2022-04, Vol.131 (16)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-90de246ead04d3cf92e1ceb99fa93f284509865f1583df8479309767435349423</cites><orcidid>0000-0002-4694-8783 ; 0000-0001-6949-3104 ; 0000-0003-1014-414X ; 0000-0002-4714-9289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0087688$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Hu, Peiju</creatorcontrib><creatorcontrib>Xie, Xing</creatorcontrib><creatorcontrib>Bai, Lingling</creatorcontrib><creatorcontrib>Zhang, Runqing</creatorcontrib><creatorcontrib>Zhang, Xunjiang</creatorcontrib><creatorcontrib>Sun, Jiaying</creatorcontrib><creatorcontrib>Dong, Huafeng</creatorcontrib><creatorcontrib>Wen, Minru</creatorcontrib><creatorcontrib>Wu, Fugen</creatorcontrib><title>Rhenium carbides phase diagram under pressure and explaining why WC-type ReC does not exist</title><title>Journal of applied physics</title><description>The stability of W–C compounds (WC)-type ReC has been controversial for many years. Here, based on ab initio algorithm, we systematically searched for stable structures in the rhenium–carbon (Re–C) system at 0–300 gigapascal (GPa) pressure and analyzed the phase diagram within the pressure range. Only P63/mmc-Re2C, C2/m-Re3C, P21/m-Re4C, and C2/m-Re5C2 phases are found to be stable under 0–300 GPa, while WC-type ReC has high enthalpy and does not appear in the phase diagram. We also discussed the stability of WC-type ReC. Among these structures, C2/m-Re3C, P21/m-Re4C, and C2/m-Re5C2 are hitherto unknown structures, which could maintain dynamic and mechanical stability under ambient pressure. In addition, through the analysis of the structural and mechanical properties, P63/mmc-Re2C is the hardest metal among them with 31.5 GPa Vickers hardness at 0 GPa, and the metastable P 6 ¯ m 2-Re5C3 has the second-highest hardness (29.3 GPa), both of which exceed the hardness of TiN (18.7 GPa), the commercial material used for cutting tools. The study of Re–C compounds with high hardness provides theoretical guidance for further experimental research.</description><subject>Algorithms</subject><subject>Applied physics</subject><subject>Diamond pyramid hardness</subject><subject>Dynamic stability</subject><subject>Enthalpy</subject><subject>Mechanical properties</subject><subject>Phase diagrams</subject><subject>Pressure</subject><subject>Rhenium</subject><subject>Stability analysis</subject><subject>Tungsten carbide</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYx_EgCs7pwXcQ8KTQmTRNmxyl-A8GwlA8eAhZ82TL2NKapOrevZWJHgRPz-XD94EfQqeUTCgp2SWfECKqUog9NKJEyKzinOyjESE5zYSs5CE6inFFCKWCyRF6mS3Bu36DGx3mzkDE3VJHwMbpRdAb3HsDAXcBYuwDYO0Nho9urZ13foHfl1v8XGdp2wGeQY1NOwR8mwbjYjpGB1avI5x83zF6url-rO-y6cPtfX01zZpcVCmTxEBelKANKQxrrMyBNjCX0mrJbC4KTqQouaVcMGNFUUlGZFVWBeOskEXOxuhs1-1C-9pDTGrV9sEPL1VecsaEYJwO6nynmtDGGMCqLriNDltFifraTnH1vd1gL3Y2Ni7p5Fr_g9_a8AtVZ-x_-G_5E-N7e-M</recordid><startdate>20220428</startdate><enddate>20220428</enddate><creator>Hu, Peiju</creator><creator>Xie, Xing</creator><creator>Bai, Lingling</creator><creator>Zhang, Runqing</creator><creator>Zhang, Xunjiang</creator><creator>Sun, Jiaying</creator><creator>Dong, Huafeng</creator><creator>Wen, Minru</creator><creator>Wu, Fugen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4694-8783</orcidid><orcidid>https://orcid.org/0000-0001-6949-3104</orcidid><orcidid>https://orcid.org/0000-0003-1014-414X</orcidid><orcidid>https://orcid.org/0000-0002-4714-9289</orcidid></search><sort><creationdate>20220428</creationdate><title>Rhenium carbides phase diagram under pressure and explaining why WC-type ReC does not exist</title><author>Hu, Peiju ; Xie, Xing ; Bai, Lingling ; Zhang, Runqing ; Zhang, Xunjiang ; Sun, Jiaying ; Dong, Huafeng ; Wen, Minru ; Wu, Fugen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-90de246ead04d3cf92e1ceb99fa93f284509865f1583df8479309767435349423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applied physics</topic><topic>Diamond pyramid hardness</topic><topic>Dynamic stability</topic><topic>Enthalpy</topic><topic>Mechanical properties</topic><topic>Phase diagrams</topic><topic>Pressure</topic><topic>Rhenium</topic><topic>Stability analysis</topic><topic>Tungsten carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Peiju</creatorcontrib><creatorcontrib>Xie, Xing</creatorcontrib><creatorcontrib>Bai, Lingling</creatorcontrib><creatorcontrib>Zhang, Runqing</creatorcontrib><creatorcontrib>Zhang, Xunjiang</creatorcontrib><creatorcontrib>Sun, Jiaying</creatorcontrib><creatorcontrib>Dong, Huafeng</creatorcontrib><creatorcontrib>Wen, Minru</creatorcontrib><creatorcontrib>Wu, Fugen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Peiju</au><au>Xie, Xing</au><au>Bai, Lingling</au><au>Zhang, Runqing</au><au>Zhang, Xunjiang</au><au>Sun, Jiaying</au><au>Dong, Huafeng</au><au>Wen, Minru</au><au>Wu, Fugen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhenium carbides phase diagram under pressure and explaining why WC-type ReC does not exist</atitle><jtitle>Journal of applied physics</jtitle><date>2022-04-28</date><risdate>2022</risdate><volume>131</volume><issue>16</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The stability of W–C compounds (WC)-type ReC has been controversial for many years. Here, based on ab initio algorithm, we systematically searched for stable structures in the rhenium–carbon (Re–C) system at 0–300 gigapascal (GPa) pressure and analyzed the phase diagram within the pressure range. Only P63/mmc-Re2C, C2/m-Re3C, P21/m-Re4C, and C2/m-Re5C2 phases are found to be stable under 0–300 GPa, while WC-type ReC has high enthalpy and does not appear in the phase diagram. We also discussed the stability of WC-type ReC. Among these structures, C2/m-Re3C, P21/m-Re4C, and C2/m-Re5C2 are hitherto unknown structures, which could maintain dynamic and mechanical stability under ambient pressure. In addition, through the analysis of the structural and mechanical properties, P63/mmc-Re2C is the hardest metal among them with 31.5 GPa Vickers hardness at 0 GPa, and the metastable P 6 ¯ m 2-Re5C3 has the second-highest hardness (29.3 GPa), both of which exceed the hardness of TiN (18.7 GPa), the commercial material used for cutting tools. The study of Re–C compounds with high hardness provides theoretical guidance for further experimental research.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0087688</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4694-8783</orcidid><orcidid>https://orcid.org/0000-0001-6949-3104</orcidid><orcidid>https://orcid.org/0000-0003-1014-414X</orcidid><orcidid>https://orcid.org/0000-0002-4714-9289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-04, Vol.131 (16)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2653388351
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Applied physics
Diamond pyramid hardness
Dynamic stability
Enthalpy
Mechanical properties
Phase diagrams
Pressure
Rhenium
Stability analysis
Tungsten carbide
title Rhenium carbides phase diagram under pressure and explaining why WC-type ReC does not exist
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhenium%20carbides%20phase%20diagram%20under%20pressure%20and%20explaining%20why%20WC-type%20ReC%20does%20not%20exist&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Hu,%20Peiju&rft.date=2022-04-28&rft.volume=131&rft.issue=16&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0087688&rft_dat=%3Cproquest_cross%3E2653388351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653388351&rft_id=info:pmid/&rfr_iscdi=true