A mid-fidelity numerical method for blood flow in deformable vessels

In this work, a novel fluid–structure interaction algorithm for the simulation of blood flow in three-dimensional deformable vessels is addressed. The method extends the mid-fidelity strategy named as Transversally Enriched Pipe Element Method, extensively tested as an efficient approach to simulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-03, Vol.392, p.114654, Article 114654
Hauptverfasser: Mansilla Alvarez, L.A., Bulant, C.A., Ares, G.D., Feijóo, R.A., Blanco, P.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114654
container_title Computer methods in applied mechanics and engineering
container_volume 392
creator Mansilla Alvarez, L.A.
Bulant, C.A.
Ares, G.D.
Feijóo, R.A.
Blanco, P.J.
description In this work, a novel fluid–structure interaction algorithm for the simulation of blood flow in three-dimensional deformable vessels is addressed. The method extends the mid-fidelity strategy named as Transversally Enriched Pipe Element Method, extensively tested as an efficient approach to simulate the blood flow under rigid wall hypothesis, by taking into account the distensibility of the lumen boundary by means of an independent ring structural model. The Navier–Stokes equations, in Arbitrary Lagrangian–Eulerian framework, are used as the governing equations for the blood flow dynamics, the vessel wall mechanics is represented through an elastic constitutive law, and the fluid domain deformation problem is explicitly solved by exploiting the layered structure of the geometry discretization associated to the mid-fidelity model. The result is an approximation strategy able to take into account the wall deformation at nearly zero added cost when compared with a rigid wall model. An extensive numerical validation and verification of the proposed methodology is reported employing simple domains and complex patient-specific geometries to highlight the potential for real applications. •Fluid–structure coupling is mandatory for modeling large vessels.•The TEPEM is extended for FSI by considering an independent ring structural model.•This model incorporate the fluid–structure interaction at zero added cost.•This strategy is an efficient alternative for expensive high-fidelity models.
doi_str_mv 10.1016/j.cma.2022.114654
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653335924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522000536</els_id><sourcerecordid>2653335924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-a5cdeb29472333ac6cb0ecc891be6a09d3c86395f88569a07e68ef2aa47642623</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFc_gLeA59YkbdIUT8v6Fxa86DmkyRRT2mZNuiv77c1Sz85lhuG9N8wPoVtKCkqouO8LM-qCEcYKSivBqzOUUVk3OaOlPEcZIRXPa8n4JbqKsSepJGUZelzj0dm8cxYGNx_xtB8hOKMHPML85S3ufMDt4E_T4H-wm7CFtBt1OwA-QIwwxGt00ekhws1fX6HP56ePzWu-fX9526y3uWGcz7nmxkLLmqpmZVlqI0xLwBjZ0BaEJo0tjRRlwzspuWg0qUFI6JjWVS0qJli5QndL7i747z3EWfV-H6Z0UjHBUyZvWJVUdFGZ4GMM0KldcKMOR0WJOsFSvUqw1AmWWmAlz8PiSd_AwUFQ0TiYDFgXwMzKeveP-xeN4XDR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653335924</pqid></control><display><type>article</type><title>A mid-fidelity numerical method for blood flow in deformable vessels</title><source>Elsevier ScienceDirect Journals</source><creator>Mansilla Alvarez, L.A. ; Bulant, C.A. ; Ares, G.D. ; Feijóo, R.A. ; Blanco, P.J.</creator><creatorcontrib>Mansilla Alvarez, L.A. ; Bulant, C.A. ; Ares, G.D. ; Feijóo, R.A. ; Blanco, P.J.</creatorcontrib><description>In this work, a novel fluid–structure interaction algorithm for the simulation of blood flow in three-dimensional deformable vessels is addressed. The method extends the mid-fidelity strategy named as Transversally Enriched Pipe Element Method, extensively tested as an efficient approach to simulate the blood flow under rigid wall hypothesis, by taking into account the distensibility of the lumen boundary by means of an independent ring structural model. The Navier–Stokes equations, in Arbitrary Lagrangian–Eulerian framework, are used as the governing equations for the blood flow dynamics, the vessel wall mechanics is represented through an elastic constitutive law, and the fluid domain deformation problem is explicitly solved by exploiting the layered structure of the geometry discretization associated to the mid-fidelity model. The result is an approximation strategy able to take into account the wall deformation at nearly zero added cost when compared with a rigid wall model. An extensive numerical validation and verification of the proposed methodology is reported employing simple domains and complex patient-specific geometries to highlight the potential for real applications. •Fluid–structure coupling is mandatory for modeling large vessels.•The TEPEM is extended for FSI by considering an independent ring structural model.•This model incorporate the fluid–structure interaction at zero added cost.•This strategy is an efficient alternative for expensive high-fidelity models.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.114654</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Algorithms ; Blood flow ; Blood vessels ; Computational hemodynamics ; Domains ; Elastic deformation ; Fluid-structure interaction ; Formability ; Mid-fidelity model ; Numerical methods ; Patient-specific simulations ; Rigid walls ; Structural models ; Three dimensional flow</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-03, Vol.392, p.114654, Article 114654</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-a5cdeb29472333ac6cb0ecc891be6a09d3c86395f88569a07e68ef2aa47642623</citedby><cites>FETCH-LOGICAL-c255t-a5cdeb29472333ac6cb0ecc891be6a09d3c86395f88569a07e68ef2aa47642623</cites><orcidid>0000-0003-3527-619X ; 0000-0003-0911-7849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782522000536$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mansilla Alvarez, L.A.</creatorcontrib><creatorcontrib>Bulant, C.A.</creatorcontrib><creatorcontrib>Ares, G.D.</creatorcontrib><creatorcontrib>Feijóo, R.A.</creatorcontrib><creatorcontrib>Blanco, P.J.</creatorcontrib><title>A mid-fidelity numerical method for blood flow in deformable vessels</title><title>Computer methods in applied mechanics and engineering</title><description>In this work, a novel fluid–structure interaction algorithm for the simulation of blood flow in three-dimensional deformable vessels is addressed. The method extends the mid-fidelity strategy named as Transversally Enriched Pipe Element Method, extensively tested as an efficient approach to simulate the blood flow under rigid wall hypothesis, by taking into account the distensibility of the lumen boundary by means of an independent ring structural model. The Navier–Stokes equations, in Arbitrary Lagrangian–Eulerian framework, are used as the governing equations for the blood flow dynamics, the vessel wall mechanics is represented through an elastic constitutive law, and the fluid domain deformation problem is explicitly solved by exploiting the layered structure of the geometry discretization associated to the mid-fidelity model. The result is an approximation strategy able to take into account the wall deformation at nearly zero added cost when compared with a rigid wall model. An extensive numerical validation and verification of the proposed methodology is reported employing simple domains and complex patient-specific geometries to highlight the potential for real applications. •Fluid–structure coupling is mandatory for modeling large vessels.•The TEPEM is extended for FSI by considering an independent ring structural model.•This model incorporate the fluid–structure interaction at zero added cost.•This strategy is an efficient alternative for expensive high-fidelity models.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Computational hemodynamics</subject><subject>Domains</subject><subject>Elastic deformation</subject><subject>Fluid-structure interaction</subject><subject>Formability</subject><subject>Mid-fidelity model</subject><subject>Numerical methods</subject><subject>Patient-specific simulations</subject><subject>Rigid walls</subject><subject>Structural models</subject><subject>Three dimensional flow</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFc_gLeA59YkbdIUT8v6Fxa86DmkyRRT2mZNuiv77c1Sz85lhuG9N8wPoVtKCkqouO8LM-qCEcYKSivBqzOUUVk3OaOlPEcZIRXPa8n4JbqKsSepJGUZelzj0dm8cxYGNx_xtB8hOKMHPML85S3ufMDt4E_T4H-wm7CFtBt1OwA-QIwwxGt00ekhws1fX6HP56ePzWu-fX9526y3uWGcz7nmxkLLmqpmZVlqI0xLwBjZ0BaEJo0tjRRlwzspuWg0qUFI6JjWVS0qJli5QndL7i747z3EWfV-H6Z0UjHBUyZvWJVUdFGZ4GMM0KldcKMOR0WJOsFSvUqw1AmWWmAlz8PiSd_AwUFQ0TiYDFgXwMzKeveP-xeN4XDR</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Mansilla Alvarez, L.A.</creator><creator>Bulant, C.A.</creator><creator>Ares, G.D.</creator><creator>Feijóo, R.A.</creator><creator>Blanco, P.J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3527-619X</orcidid><orcidid>https://orcid.org/0000-0003-0911-7849</orcidid></search><sort><creationdate>20220315</creationdate><title>A mid-fidelity numerical method for blood flow in deformable vessels</title><author>Mansilla Alvarez, L.A. ; Bulant, C.A. ; Ares, G.D. ; Feijóo, R.A. ; Blanco, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-a5cdeb29472333ac6cb0ecc891be6a09d3c86395f88569a07e68ef2aa47642623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Computational hemodynamics</topic><topic>Domains</topic><topic>Elastic deformation</topic><topic>Fluid-structure interaction</topic><topic>Formability</topic><topic>Mid-fidelity model</topic><topic>Numerical methods</topic><topic>Patient-specific simulations</topic><topic>Rigid walls</topic><topic>Structural models</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansilla Alvarez, L.A.</creatorcontrib><creatorcontrib>Bulant, C.A.</creatorcontrib><creatorcontrib>Ares, G.D.</creatorcontrib><creatorcontrib>Feijóo, R.A.</creatorcontrib><creatorcontrib>Blanco, P.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansilla Alvarez, L.A.</au><au>Bulant, C.A.</au><au>Ares, G.D.</au><au>Feijóo, R.A.</au><au>Blanco, P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mid-fidelity numerical method for blood flow in deformable vessels</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>392</volume><spage>114654</spage><pages>114654-</pages><artnum>114654</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this work, a novel fluid–structure interaction algorithm for the simulation of blood flow in three-dimensional deformable vessels is addressed. The method extends the mid-fidelity strategy named as Transversally Enriched Pipe Element Method, extensively tested as an efficient approach to simulate the blood flow under rigid wall hypothesis, by taking into account the distensibility of the lumen boundary by means of an independent ring structural model. The Navier–Stokes equations, in Arbitrary Lagrangian–Eulerian framework, are used as the governing equations for the blood flow dynamics, the vessel wall mechanics is represented through an elastic constitutive law, and the fluid domain deformation problem is explicitly solved by exploiting the layered structure of the geometry discretization associated to the mid-fidelity model. The result is an approximation strategy able to take into account the wall deformation at nearly zero added cost when compared with a rigid wall model. An extensive numerical validation and verification of the proposed methodology is reported employing simple domains and complex patient-specific geometries to highlight the potential for real applications. •Fluid–structure coupling is mandatory for modeling large vessels.•The TEPEM is extended for FSI by considering an independent ring structural model.•This model incorporate the fluid–structure interaction at zero added cost.•This strategy is an efficient alternative for expensive high-fidelity models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.114654</doi><orcidid>https://orcid.org/0000-0003-3527-619X</orcidid><orcidid>https://orcid.org/0000-0003-0911-7849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-03, Vol.392, p.114654, Article 114654
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2653335924
source Elsevier ScienceDirect Journals
subjects Accuracy
Algorithms
Blood flow
Blood vessels
Computational hemodynamics
Domains
Elastic deformation
Fluid-structure interaction
Formability
Mid-fidelity model
Numerical methods
Patient-specific simulations
Rigid walls
Structural models
Three dimensional flow
title A mid-fidelity numerical method for blood flow in deformable vessels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mid-fidelity%20numerical%20method%20for%20blood%20flow%20in%20deformable%20vessels&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Mansilla%20Alvarez,%20L.A.&rft.date=2022-03-15&rft.volume=392&rft.spage=114654&rft.pages=114654-&rft.artnum=114654&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.114654&rft_dat=%3Cproquest_cross%3E2653335924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653335924&rft_id=info:pmid/&rft_els_id=S0045782522000536&rfr_iscdi=true