Floating Isogeometric Analysis

We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-03, Vol.392, p.114684, Article 114684
Hauptverfasser: Hille, Helge C., Kumar, Siddhant, De Lorenzis, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114684
container_title Computer methods in applied mechanics and engineering
container_volume 392
creator Hille, Helge C.
Kumar, Siddhant
De Lorenzis, Laura
description We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature, thus attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor–Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach. •We propose Floating Isogeometric Analysis (FLIGA).•FLIGA overcomes mesh distortion for extreme deformations.•FLIGA is suitable when deformations occur predominantly along one (possibly curved) axis.•We test FLIGA on Taylor–Couette Newtonian and viscoelastic flow.•We apply FLIGA to the simulation of extrusion-based additive manufacturing.
doi_str_mv 10.1016/j.cma.2022.114684
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653335784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522000688</els_id><sourcerecordid>2653335784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5709149da966e3b4cbe91f8d86e603e2510a89df33a96b9a0741691eb16631be3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsf4EYKrmfMSzKZBFelWC0U3Og6ZDJvSoa2qclU6N-bMq77Nm9zz-VyCHkEWgIF-dKXbmdLRhkrAYRU4opMQNW6YMDVNZlQKqqiVqy6JXcp9TSfAjYhT8ttsIPfb2arFDYYdjhE72bzvd2ekk_35Kaz24QP_39KvpdvX4uPYv35vlrM14XjUg1FVVMNQrdWS4m8Ea5BDZ1qlURJObIKqFW67TjPiUZbWguQGrABKTk0yKfkeew9xPBzxDSYPhxjHpEMkxXnvKqVyCkYUy6GlCJ25hD9zsaTAWrOGkxvsgZz1mBGDZl5HRnM8389RpOcx73D1kd0g2mDv0D_AavrYm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653335784</pqid></control><display><type>article</type><title>Floating Isogeometric Analysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hille, Helge C. ; Kumar, Siddhant ; De Lorenzis, Laura</creator><creatorcontrib>Hille, Helge C. ; Kumar, Siddhant ; De Lorenzis, Laura</creatorcontrib><description>We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature, thus attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor–Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach. •We propose Floating Isogeometric Analysis (FLIGA).•FLIGA overcomes mesh distortion for extreme deformations.•FLIGA is suitable when deformations occur predominantly along one (possibly curved) axis.•We test FLIGA on Taylor–Couette Newtonian and viscoelastic flow.•We apply FLIGA to the simulation of extrusion-based additive manufacturing.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.114684</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Additive manufacturing ; B spline functions ; Basis functions ; Couette flow ; Deformation analysis ; Extreme deformations ; Extrusion ; Finite element method ; Isogeometric analysis ; Mathematical analysis ; Mesh distortion ; Meshless methods ; Patch tests ; Quadratures ; Tensors ; Viscoelasticity</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-03, Vol.392, p.114684, Article 114684</ispartof><rights>2022 The Author(s)</rights><rights>Copyright Elsevier BV Mar 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5709149da966e3b4cbe91f8d86e603e2510a89df33a96b9a0741691eb16631be3</citedby><cites>FETCH-LOGICAL-c368t-5709149da966e3b4cbe91f8d86e603e2510a89df33a96b9a0741691eb16631be3</cites><orcidid>0000-0003-2748-3287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2022.114684$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hille, Helge C.</creatorcontrib><creatorcontrib>Kumar, Siddhant</creatorcontrib><creatorcontrib>De Lorenzis, Laura</creatorcontrib><title>Floating Isogeometric Analysis</title><title>Computer methods in applied mechanics and engineering</title><description>We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature, thus attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor–Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach. •We propose Floating Isogeometric Analysis (FLIGA).•FLIGA overcomes mesh distortion for extreme deformations.•FLIGA is suitable when deformations occur predominantly along one (possibly curved) axis.•We test FLIGA on Taylor–Couette Newtonian and viscoelastic flow.•We apply FLIGA to the simulation of extrusion-based additive manufacturing.</description><subject>Additive manufacturing</subject><subject>B spline functions</subject><subject>Basis functions</subject><subject>Couette flow</subject><subject>Deformation analysis</subject><subject>Extreme deformations</subject><subject>Extrusion</subject><subject>Finite element method</subject><subject>Isogeometric analysis</subject><subject>Mathematical analysis</subject><subject>Mesh distortion</subject><subject>Meshless methods</subject><subject>Patch tests</subject><subject>Quadratures</subject><subject>Tensors</subject><subject>Viscoelasticity</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKsf4EYKrmfMSzKZBFelWC0U3Og6ZDJvSoa2qclU6N-bMq77Nm9zz-VyCHkEWgIF-dKXbmdLRhkrAYRU4opMQNW6YMDVNZlQKqqiVqy6JXcp9TSfAjYhT8ttsIPfb2arFDYYdjhE72bzvd2ekk_35Kaz24QP_39KvpdvX4uPYv35vlrM14XjUg1FVVMNQrdWS4m8Ea5BDZ1qlURJObIKqFW67TjPiUZbWguQGrABKTk0yKfkeew9xPBzxDSYPhxjHpEMkxXnvKqVyCkYUy6GlCJ25hD9zsaTAWrOGkxvsgZz1mBGDZl5HRnM8389RpOcx73D1kd0g2mDv0D_AavrYm8</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Hille, Helge C.</creator><creator>Kumar, Siddhant</creator><creator>De Lorenzis, Laura</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2748-3287</orcidid></search><sort><creationdate>20220315</creationdate><title>Floating Isogeometric Analysis</title><author>Hille, Helge C. ; Kumar, Siddhant ; De Lorenzis, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5709149da966e3b4cbe91f8d86e603e2510a89df33a96b9a0741691eb16631be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>B spline functions</topic><topic>Basis functions</topic><topic>Couette flow</topic><topic>Deformation analysis</topic><topic>Extreme deformations</topic><topic>Extrusion</topic><topic>Finite element method</topic><topic>Isogeometric analysis</topic><topic>Mathematical analysis</topic><topic>Mesh distortion</topic><topic>Meshless methods</topic><topic>Patch tests</topic><topic>Quadratures</topic><topic>Tensors</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hille, Helge C.</creatorcontrib><creatorcontrib>Kumar, Siddhant</creatorcontrib><creatorcontrib>De Lorenzis, Laura</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hille, Helge C.</au><au>Kumar, Siddhant</au><au>De Lorenzis, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floating Isogeometric Analysis</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>392</volume><spage>114684</spage><pages>114684-</pages><artnum>114684</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature, thus attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor–Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach. •We propose Floating Isogeometric Analysis (FLIGA).•FLIGA overcomes mesh distortion for extreme deformations.•FLIGA is suitable when deformations occur predominantly along one (possibly curved) axis.•We test FLIGA on Taylor–Couette Newtonian and viscoelastic flow.•We apply FLIGA to the simulation of extrusion-based additive manufacturing.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.114684</doi><orcidid>https://orcid.org/0000-0003-2748-3287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-03, Vol.392, p.114684, Article 114684
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2653335784
source Elsevier ScienceDirect Journals Complete
subjects Additive manufacturing
B spline functions
Basis functions
Couette flow
Deformation analysis
Extreme deformations
Extrusion
Finite element method
Isogeometric analysis
Mathematical analysis
Mesh distortion
Meshless methods
Patch tests
Quadratures
Tensors
Viscoelasticity
title Floating Isogeometric Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floating%20Isogeometric%20Analysis&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Hille,%20Helge%20C.&rft.date=2022-03-15&rft.volume=392&rft.spage=114684&rft.pages=114684-&rft.artnum=114684&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.114684&rft_dat=%3Cproquest_cross%3E2653335784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653335784&rft_id=info:pmid/&rft_els_id=S0045782522000688&rfr_iscdi=true