Floating Isogeometric Analysis
We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-de...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2022-03, Vol.392, p.114684, Article 114684 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114684 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 392 |
creator | Hille, Helge C. Kumar, Siddhant De Lorenzis, Laura |
description | We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature, thus attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor–Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach.
•We propose Floating Isogeometric Analysis (FLIGA).•FLIGA overcomes mesh distortion for extreme deformations.•FLIGA is suitable when deformations occur predominantly along one (possibly curved) axis.•We test FLIGA on Taylor–Couette Newtonian and viscoelastic flow.•We apply FLIGA to the simulation of extrusion-based additive manufacturing. |
doi_str_mv | 10.1016/j.cma.2022.114684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653335784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522000688</els_id><sourcerecordid>2653335784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5709149da966e3b4cbe91f8d86e603e2510a89df33a96b9a0741691eb16631be3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsf4EYKrmfMSzKZBFelWC0U3Og6ZDJvSoa2qclU6N-bMq77Nm9zz-VyCHkEWgIF-dKXbmdLRhkrAYRU4opMQNW6YMDVNZlQKqqiVqy6JXcp9TSfAjYhT8ttsIPfb2arFDYYdjhE72bzvd2ekk_35Kaz24QP_39KvpdvX4uPYv35vlrM14XjUg1FVVMNQrdWS4m8Ea5BDZ1qlURJObIKqFW67TjPiUZbWguQGrABKTk0yKfkeew9xPBzxDSYPhxjHpEMkxXnvKqVyCkYUy6GlCJ25hD9zsaTAWrOGkxvsgZz1mBGDZl5HRnM8389RpOcx73D1kd0g2mDv0D_AavrYm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653335784</pqid></control><display><type>article</type><title>Floating Isogeometric Analysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hille, Helge C. ; Kumar, Siddhant ; De Lorenzis, Laura</creator><creatorcontrib>Hille, Helge C. ; Kumar, Siddhant ; De Lorenzis, Laura</creatorcontrib><description>We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature, thus attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor–Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach.
•We propose Floating Isogeometric Analysis (FLIGA).•FLIGA overcomes mesh distortion for extreme deformations.•FLIGA is suitable when deformations occur predominantly along one (possibly curved) axis.•We test FLIGA on Taylor–Couette Newtonian and viscoelastic flow.•We apply FLIGA to the simulation of extrusion-based additive manufacturing.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.114684</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Additive manufacturing ; B spline functions ; Basis functions ; Couette flow ; Deformation analysis ; Extreme deformations ; Extrusion ; Finite element method ; Isogeometric analysis ; Mathematical analysis ; Mesh distortion ; Meshless methods ; Patch tests ; Quadratures ; Tensors ; Viscoelasticity</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-03, Vol.392, p.114684, Article 114684</ispartof><rights>2022 The Author(s)</rights><rights>Copyright Elsevier BV Mar 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5709149da966e3b4cbe91f8d86e603e2510a89df33a96b9a0741691eb16631be3</citedby><cites>FETCH-LOGICAL-c368t-5709149da966e3b4cbe91f8d86e603e2510a89df33a96b9a0741691eb16631be3</cites><orcidid>0000-0003-2748-3287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2022.114684$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hille, Helge C.</creatorcontrib><creatorcontrib>Kumar, Siddhant</creatorcontrib><creatorcontrib>De Lorenzis, Laura</creatorcontrib><title>Floating Isogeometric Analysis</title><title>Computer methods in applied mechanics and engineering</title><description>We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature, thus attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor–Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach.
•We propose Floating Isogeometric Analysis (FLIGA).•FLIGA overcomes mesh distortion for extreme deformations.•FLIGA is suitable when deformations occur predominantly along one (possibly curved) axis.•We test FLIGA on Taylor–Couette Newtonian and viscoelastic flow.•We apply FLIGA to the simulation of extrusion-based additive manufacturing.</description><subject>Additive manufacturing</subject><subject>B spline functions</subject><subject>Basis functions</subject><subject>Couette flow</subject><subject>Deformation analysis</subject><subject>Extreme deformations</subject><subject>Extrusion</subject><subject>Finite element method</subject><subject>Isogeometric analysis</subject><subject>Mathematical analysis</subject><subject>Mesh distortion</subject><subject>Meshless methods</subject><subject>Patch tests</subject><subject>Quadratures</subject><subject>Tensors</subject><subject>Viscoelasticity</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKsf4EYKrmfMSzKZBFelWC0U3Og6ZDJvSoa2qclU6N-bMq77Nm9zz-VyCHkEWgIF-dKXbmdLRhkrAYRU4opMQNW6YMDVNZlQKqqiVqy6JXcp9TSfAjYhT8ttsIPfb2arFDYYdjhE72bzvd2ekk_35Kaz24QP_39KvpdvX4uPYv35vlrM14XjUg1FVVMNQrdWS4m8Ea5BDZ1qlURJObIKqFW67TjPiUZbWguQGrABKTk0yKfkeew9xPBzxDSYPhxjHpEMkxXnvKqVyCkYUy6GlCJ25hD9zsaTAWrOGkxvsgZz1mBGDZl5HRnM8389RpOcx73D1kd0g2mDv0D_AavrYm8</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Hille, Helge C.</creator><creator>Kumar, Siddhant</creator><creator>De Lorenzis, Laura</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2748-3287</orcidid></search><sort><creationdate>20220315</creationdate><title>Floating Isogeometric Analysis</title><author>Hille, Helge C. ; Kumar, Siddhant ; De Lorenzis, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5709149da966e3b4cbe91f8d86e603e2510a89df33a96b9a0741691eb16631be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>B spline functions</topic><topic>Basis functions</topic><topic>Couette flow</topic><topic>Deformation analysis</topic><topic>Extreme deformations</topic><topic>Extrusion</topic><topic>Finite element method</topic><topic>Isogeometric analysis</topic><topic>Mathematical analysis</topic><topic>Mesh distortion</topic><topic>Meshless methods</topic><topic>Patch tests</topic><topic>Quadratures</topic><topic>Tensors</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hille, Helge C.</creatorcontrib><creatorcontrib>Kumar, Siddhant</creatorcontrib><creatorcontrib>De Lorenzis, Laura</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hille, Helge C.</au><au>Kumar, Siddhant</au><au>De Lorenzis, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floating Isogeometric Analysis</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>392</volume><spage>114684</spage><pages>114684-</pages><artnum>114684</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature, thus attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor–Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach.
•We propose Floating Isogeometric Analysis (FLIGA).•FLIGA overcomes mesh distortion for extreme deformations.•FLIGA is suitable when deformations occur predominantly along one (possibly curved) axis.•We test FLIGA on Taylor–Couette Newtonian and viscoelastic flow.•We apply FLIGA to the simulation of extrusion-based additive manufacturing.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.114684</doi><orcidid>https://orcid.org/0000-0003-2748-3287</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2022-03, Vol.392, p.114684, Article 114684 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2653335784 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Additive manufacturing B spline functions Basis functions Couette flow Deformation analysis Extreme deformations Extrusion Finite element method Isogeometric analysis Mathematical analysis Mesh distortion Meshless methods Patch tests Quadratures Tensors Viscoelasticity |
title | Floating Isogeometric Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floating%20Isogeometric%20Analysis&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Hille,%20Helge%20C.&rft.date=2022-03-15&rft.volume=392&rft.spage=114684&rft.pages=114684-&rft.artnum=114684&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.114684&rft_dat=%3Cproquest_cross%3E2653335784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653335784&rft_id=info:pmid/&rft_els_id=S0045782522000688&rfr_iscdi=true |