Floating Isogeometric Analysis

We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-03, Vol.392, p.114684, Article 114684
Hauptverfasser: Hille, Helge C., Kumar, Siddhant, De Lorenzis, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature, thus attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor–Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach. •We propose Floating Isogeometric Analysis (FLIGA).•FLIGA overcomes mesh distortion for extreme deformations.•FLIGA is suitable when deformations occur predominantly along one (possibly curved) axis.•We test FLIGA on Taylor–Couette Newtonian and viscoelastic flow.•We apply FLIGA to the simulation of extrusion-based additive manufacturing.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2022.114684