Inference for low-rank tensors—no need to debias

In this paper, we consider the statistical inference for several low-rank tensor models. Specifically, in the Tucker low-rank tensor PCA or regression model, provided with any estimates achieving some attainable error rate, we develop the data-driven confidence regions for the singular subspace of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2022-04, Vol.50 (2), p.1220
Hauptverfasser: Xia, Dong, Zhang, Anru R., Zhou, Yuchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1220
container_title The Annals of statistics
container_volume 50
creator Xia, Dong
Zhang, Anru R.
Zhou, Yuchen
description In this paper, we consider the statistical inference for several low-rank tensor models. Specifically, in the Tucker low-rank tensor PCA or regression model, provided with any estimates achieving some attainable error rate, we develop the data-driven confidence regions for the singular subspace of the parameter tensor based on the asymptotic distribution of an updated estimate by two-iteration alternating minimization. The asymptotic distributions are established under some essential conditions on the signal-to-noise ratio (in PCA model) or sample size (in regression model). If the parameter tensor is further orthogonally decomposable, we develop the methods and nonasymptotic theory for inference on each individual singular vector. For the rank-one tensor PCA model, we establish the asymptotic distribution for general linear forms of principal components and confidence interval for each entry of the parameter tensor. Finally, numerical simulations are presented to corroborate our theoretical discoveries. In all of these models, we observe that different from many matrix/vector settings in existing work, debiasing is not required to establish the asymptotic distribution of estimates or to make statistical inference on low-rank tensors. In fact, due to the widely observed statistical-computational-gap for low-rank tensor estimation, one usually requires stronger conditions than the statistical (or information-theoretic) limit to ensure the computationally feasible estimation is achievable. Surprisingly, such conditions "incidentally" render a feasible low-rank tensor inference without debiasing.
doi_str_mv 10.1214/21-AOS2146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653334979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653334979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-2efa09da942de5d7b3e193e44c728572f636440a9db9b43f272deea28d0aa5293</originalsourceid><addsrcrecordid>eNotkM9KAzEYxIMouFYvPkHAmxBNvmSzm2Mp_ikUelDPIbv5Aq01qckW8eZD-IQ-iVva08zhx8wwhFwLfidAqHsQbLp8GZ0-IRUI3bLWaH1KKs4NZ7XU6pxclLLmnNdGyYrAPAbMGHukIWW6SV8su_hOB4wl5fL38xsTjYieDol67FauXJKz4DYFr446IW-PD6-zZ7ZYPs1n0wXrQbQDAwyOG--MAo-1bzqJwkhUqm-grRsIelyjuDO-M52SAZqRQwet587VYOSE3Bxytzl97rAMdp12OY6VFnQtpVSm2VO3B6rPqZSMwW7z6sPlbyu43X9iQdjjJ_IfHgJTPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653334979</pqid></control><display><type>article</type><title>Inference for low-rank tensors—no need to debias</title><source>Project Euclid Complete</source><creator>Xia, Dong ; Zhang, Anru R. ; Zhou, Yuchen</creator><creatorcontrib>Xia, Dong ; Zhang, Anru R. ; Zhou, Yuchen</creatorcontrib><description>In this paper, we consider the statistical inference for several low-rank tensor models. Specifically, in the Tucker low-rank tensor PCA or regression model, provided with any estimates achieving some attainable error rate, we develop the data-driven confidence regions for the singular subspace of the parameter tensor based on the asymptotic distribution of an updated estimate by two-iteration alternating minimization. The asymptotic distributions are established under some essential conditions on the signal-to-noise ratio (in PCA model) or sample size (in regression model). If the parameter tensor is further orthogonally decomposable, we develop the methods and nonasymptotic theory for inference on each individual singular vector. For the rank-one tensor PCA model, we establish the asymptotic distribution for general linear forms of principal components and confidence interval for each entry of the parameter tensor. Finally, numerical simulations are presented to corroborate our theoretical discoveries. In all of these models, we observe that different from many matrix/vector settings in existing work, debiasing is not required to establish the asymptotic distribution of estimates or to make statistical inference on low-rank tensors. In fact, due to the widely observed statistical-computational-gap for low-rank tensor estimation, one usually requires stronger conditions than the statistical (or information-theoretic) limit to ensure the computationally feasible estimation is achievable. Surprisingly, such conditions "incidentally" render a feasible low-rank tensor inference without debiasing.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/21-AOS2146</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Asymptotic methods ; Asymptotic properties ; Confidence intervals ; Estimates ; Estimating techniques ; Information theory ; Iterative methods ; Parameters ; Principal components analysis ; Regression analysis ; Regression models ; Signal to noise ratio ; Statistical analysis ; Statistical inference ; Tensors</subject><ispartof>The Annals of statistics, 2022-04, Vol.50 (2), p.1220</ispartof><rights>Copyright Institute of Mathematical Statistics Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-2efa09da942de5d7b3e193e44c728572f636440a9db9b43f272deea28d0aa5293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xia, Dong</creatorcontrib><creatorcontrib>Zhang, Anru R.</creatorcontrib><creatorcontrib>Zhou, Yuchen</creatorcontrib><title>Inference for low-rank tensors—no need to debias</title><title>The Annals of statistics</title><description>In this paper, we consider the statistical inference for several low-rank tensor models. Specifically, in the Tucker low-rank tensor PCA or regression model, provided with any estimates achieving some attainable error rate, we develop the data-driven confidence regions for the singular subspace of the parameter tensor based on the asymptotic distribution of an updated estimate by two-iteration alternating minimization. The asymptotic distributions are established under some essential conditions on the signal-to-noise ratio (in PCA model) or sample size (in regression model). If the parameter tensor is further orthogonally decomposable, we develop the methods and nonasymptotic theory for inference on each individual singular vector. For the rank-one tensor PCA model, we establish the asymptotic distribution for general linear forms of principal components and confidence interval for each entry of the parameter tensor. Finally, numerical simulations are presented to corroborate our theoretical discoveries. In all of these models, we observe that different from many matrix/vector settings in existing work, debiasing is not required to establish the asymptotic distribution of estimates or to make statistical inference on low-rank tensors. In fact, due to the widely observed statistical-computational-gap for low-rank tensor estimation, one usually requires stronger conditions than the statistical (or information-theoretic) limit to ensure the computationally feasible estimation is achievable. Surprisingly, such conditions "incidentally" render a feasible low-rank tensor inference without debiasing.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Confidence intervals</subject><subject>Estimates</subject><subject>Estimating techniques</subject><subject>Information theory</subject><subject>Iterative methods</subject><subject>Parameters</subject><subject>Principal components analysis</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Signal to noise ratio</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Tensors</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkM9KAzEYxIMouFYvPkHAmxBNvmSzm2Mp_ikUelDPIbv5Aq01qckW8eZD-IQ-iVva08zhx8wwhFwLfidAqHsQbLp8GZ0-IRUI3bLWaH1KKs4NZ7XU6pxclLLmnNdGyYrAPAbMGHukIWW6SV8su_hOB4wl5fL38xsTjYieDol67FauXJKz4DYFr446IW-PD6-zZ7ZYPs1n0wXrQbQDAwyOG--MAo-1bzqJwkhUqm-grRsIelyjuDO-M52SAZqRQwet587VYOSE3Bxytzl97rAMdp12OY6VFnQtpVSm2VO3B6rPqZSMwW7z6sPlbyu43X9iQdjjJ_IfHgJTPQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Xia, Dong</creator><creator>Zhang, Anru R.</creator><creator>Zhou, Yuchen</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20220401</creationdate><title>Inference for low-rank tensors—no need to debias</title><author>Xia, Dong ; Zhang, Anru R. ; Zhou, Yuchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-2efa09da942de5d7b3e193e44c728572f636440a9db9b43f272deea28d0aa5293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Confidence intervals</topic><topic>Estimates</topic><topic>Estimating techniques</topic><topic>Information theory</topic><topic>Iterative methods</topic><topic>Parameters</topic><topic>Principal components analysis</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Signal to noise ratio</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Dong</creatorcontrib><creatorcontrib>Zhang, Anru R.</creatorcontrib><creatorcontrib>Zhou, Yuchen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Dong</au><au>Zhang, Anru R.</au><au>Zhou, Yuchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference for low-rank tensors—no need to debias</atitle><jtitle>The Annals of statistics</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>50</volume><issue>2</issue><spage>1220</spage><pages>1220-</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>In this paper, we consider the statistical inference for several low-rank tensor models. Specifically, in the Tucker low-rank tensor PCA or regression model, provided with any estimates achieving some attainable error rate, we develop the data-driven confidence regions for the singular subspace of the parameter tensor based on the asymptotic distribution of an updated estimate by two-iteration alternating minimization. The asymptotic distributions are established under some essential conditions on the signal-to-noise ratio (in PCA model) or sample size (in regression model). If the parameter tensor is further orthogonally decomposable, we develop the methods and nonasymptotic theory for inference on each individual singular vector. For the rank-one tensor PCA model, we establish the asymptotic distribution for general linear forms of principal components and confidence interval for each entry of the parameter tensor. Finally, numerical simulations are presented to corroborate our theoretical discoveries. In all of these models, we observe that different from many matrix/vector settings in existing work, debiasing is not required to establish the asymptotic distribution of estimates or to make statistical inference on low-rank tensors. In fact, due to the widely observed statistical-computational-gap for low-rank tensor estimation, one usually requires stronger conditions than the statistical (or information-theoretic) limit to ensure the computationally feasible estimation is achievable. Surprisingly, such conditions "incidentally" render a feasible low-rank tensor inference without debiasing.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/21-AOS2146</doi></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2022-04, Vol.50 (2), p.1220
issn 0090-5364
2168-8966
language eng
recordid cdi_proquest_journals_2653334979
source Project Euclid Complete
subjects Asymptotic methods
Asymptotic properties
Confidence intervals
Estimates
Estimating techniques
Information theory
Iterative methods
Parameters
Principal components analysis
Regression analysis
Regression models
Signal to noise ratio
Statistical analysis
Statistical inference
Tensors
title Inference for low-rank tensors—no need to debias
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20for%20low-rank%20tensors%E2%80%94no%20need%20to%20debias&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Xia,%20Dong&rft.date=2022-04-01&rft.volume=50&rft.issue=2&rft.spage=1220&rft.pages=1220-&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/21-AOS2146&rft_dat=%3Cproquest_cross%3E2653334979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653334979&rft_id=info:pmid/&rfr_iscdi=true