Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation

Defect engineering greatly enhances the catalytic activity of transition metal semiconductor photocatalysts. Recently, localized surface defects engineering has been intensively researched, but it still remains challenges on how to tilt the balance to the controllable construction of surface defects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2022-06, Vol.41 (6), p.2074-2083
Hauptverfasser: Qiu, Jiang-Yuan, Feng, Hua-Zhang, Chen, Zhao-Hui, Ruan, Shu-Hong, Chen, Yan-Ping, Xu, Ting-Ting, Su, Jing-Yun, Ha, En-Na, Wang, Lu-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2083
container_issue 6
container_start_page 2074
container_title Rare metals
container_volume 41
creator Qiu, Jiang-Yuan
Feng, Hua-Zhang
Chen, Zhao-Hui
Ruan, Shu-Hong
Chen, Yan-Ping
Xu, Ting-Ting
Su, Jing-Yun
Ha, En-Na
Wang, Lu-Yang
description Defect engineering greatly enhances the catalytic activity of transition metal semiconductor photocatalysts. Recently, localized surface defects engineering has been intensively researched, but it still remains challenges on how to tilt the balance to the controllable construction of surface defects rather than bulk ones. Here, we report a facile room-temperature solution processing strategy on (001) facet exposed anatase TiO 2 nanosheets (ATO), in which localized defects are generated on the surface selectivity with high concentration. To achieve the aspect, lithium-ethylenediamine (Li-EDA) treatment is carried out on (001) facet exposed ATO under a mild condition. The optimized sample exhibits outstanding photocatalytic H 2 production rates of 9.28 mmol·g −1 ·h −1 with loading 0.5 wt% Pt as co-catalyst (AM 1.5), which is nearly 7.5 times higher than that of the pristine ATO. This defect engineering strategy of ATO photocatalyst will spark the ideas for the defects engineering and semiconductor photocatalyst, which is with important application prospect in solar energy conversion, including hydrogen generation and carbon dioxide reduction. Graphical abstract
doi_str_mv 10.1007/s12598-021-01929-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653296323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653296323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2e56c888ac66b67173088b74c551210241dba1deac71400f6306019f9b16fa3d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYsouK5-AU8Bz9VM0qbtURb_wcIeXM8hTSfbLjVZk1Yo-OHNWsGbh2FmeO_NwC9JroHeAqXFXQCWV2VKGaQUKlal2UmygFIUaQFlfhpnSqOUMzhPLkLYU5plQtBF8vWKPeqh-0TS2cG7ZoyLs8QZEkZvlEbSoImOEHWirBpUQLLtNoxYZV1oEaNknCdtt2v7iaAxne7QDuTQusHpGOinodOknRrvdmhJLPTq-OUyOTOqD3j125fJ2-PDdvWcrjdPL6v7dao5VEPKMBe6LEulhahFAQWnZVkXmc5zYEBZBk2toEGlC8goNYJTESmYqgZhFG_4MrmZ7x68-xgxDHLvRm_jS8lEzlklOOPRxWaX9i4Ej0YefPeu_CSByiNlOVOWkbL8oSyzGOJzKESz3aH_O_1P6htGwYGP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653296323</pqid></control><display><type>article</type><title>Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Qiu, Jiang-Yuan ; Feng, Hua-Zhang ; Chen, Zhao-Hui ; Ruan, Shu-Hong ; Chen, Yan-Ping ; Xu, Ting-Ting ; Su, Jing-Yun ; Ha, En-Na ; Wang, Lu-Yang</creator><creatorcontrib>Qiu, Jiang-Yuan ; Feng, Hua-Zhang ; Chen, Zhao-Hui ; Ruan, Shu-Hong ; Chen, Yan-Ping ; Xu, Ting-Ting ; Su, Jing-Yun ; Ha, En-Na ; Wang, Lu-Yang</creatorcontrib><description>Defect engineering greatly enhances the catalytic activity of transition metal semiconductor photocatalysts. Recently, localized surface defects engineering has been intensively researched, but it still remains challenges on how to tilt the balance to the controllable construction of surface defects rather than bulk ones. Here, we report a facile room-temperature solution processing strategy on (001) facet exposed anatase TiO 2 nanosheets (ATO), in which localized defects are generated on the surface selectivity with high concentration. To achieve the aspect, lithium-ethylenediamine (Li-EDA) treatment is carried out on (001) facet exposed ATO under a mild condition. The optimized sample exhibits outstanding photocatalytic H 2 production rates of 9.28 mmol·g −1 ·h −1 with loading 0.5 wt% Pt as co-catalyst (AM 1.5), which is nearly 7.5 times higher than that of the pristine ATO. This defect engineering strategy of ATO photocatalyst will spark the ideas for the defects engineering and semiconductor photocatalyst, which is with important application prospect in solar energy conversion, including hydrogen generation and carbon dioxide reduction. Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-021-01929-4</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Anatase ; Biomaterials ; Carbon dioxide ; Catalytic activity ; Chemistry and Materials Science ; Energy ; Engineering ; Ethylenediamine ; Hydrogen production ; Lithium ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoscale Science and Technology ; Nanosheets ; Original Article ; Photocatalysis ; Photocatalysts ; Physical Chemistry ; Room temperature ; Selectivity ; Solar energy conversion ; Surface defects ; Titanium dioxide ; Transition metals</subject><ispartof>Rare metals, 2022-06, Vol.41 (6), p.2074-2083</ispartof><rights>Youke Publishing Co.,Ltd 2022</rights><rights>Youke Publishing Co.,Ltd 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2e56c888ac66b67173088b74c551210241dba1deac71400f6306019f9b16fa3d3</citedby><cites>FETCH-LOGICAL-c319t-2e56c888ac66b67173088b74c551210241dba1deac71400f6306019f9b16fa3d3</cites><orcidid>0000-0003-1626-0619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-021-01929-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-021-01929-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Qiu, Jiang-Yuan</creatorcontrib><creatorcontrib>Feng, Hua-Zhang</creatorcontrib><creatorcontrib>Chen, Zhao-Hui</creatorcontrib><creatorcontrib>Ruan, Shu-Hong</creatorcontrib><creatorcontrib>Chen, Yan-Ping</creatorcontrib><creatorcontrib>Xu, Ting-Ting</creatorcontrib><creatorcontrib>Su, Jing-Yun</creatorcontrib><creatorcontrib>Ha, En-Na</creatorcontrib><creatorcontrib>Wang, Lu-Yang</creatorcontrib><title>Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Defect engineering greatly enhances the catalytic activity of transition metal semiconductor photocatalysts. Recently, localized surface defects engineering has been intensively researched, but it still remains challenges on how to tilt the balance to the controllable construction of surface defects rather than bulk ones. Here, we report a facile room-temperature solution processing strategy on (001) facet exposed anatase TiO 2 nanosheets (ATO), in which localized defects are generated on the surface selectivity with high concentration. To achieve the aspect, lithium-ethylenediamine (Li-EDA) treatment is carried out on (001) facet exposed ATO under a mild condition. The optimized sample exhibits outstanding photocatalytic H 2 production rates of 9.28 mmol·g −1 ·h −1 with loading 0.5 wt% Pt as co-catalyst (AM 1.5), which is nearly 7.5 times higher than that of the pristine ATO. This defect engineering strategy of ATO photocatalyst will spark the ideas for the defects engineering and semiconductor photocatalyst, which is with important application prospect in solar energy conversion, including hydrogen generation and carbon dioxide reduction. Graphical abstract</description><subject>Anatase</subject><subject>Biomaterials</subject><subject>Carbon dioxide</subject><subject>Catalytic activity</subject><subject>Chemistry and Materials Science</subject><subject>Energy</subject><subject>Engineering</subject><subject>Ethylenediamine</subject><subject>Hydrogen production</subject><subject>Lithium</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>Nanosheets</subject><subject>Original Article</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Physical Chemistry</subject><subject>Room temperature</subject><subject>Selectivity</subject><subject>Solar energy conversion</subject><subject>Surface defects</subject><subject>Titanium dioxide</subject><subject>Transition metals</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYsouK5-AU8Bz9VM0qbtURb_wcIeXM8hTSfbLjVZk1Yo-OHNWsGbh2FmeO_NwC9JroHeAqXFXQCWV2VKGaQUKlal2UmygFIUaQFlfhpnSqOUMzhPLkLYU5plQtBF8vWKPeqh-0TS2cG7ZoyLs8QZEkZvlEbSoImOEHWirBpUQLLtNoxYZV1oEaNknCdtt2v7iaAxne7QDuTQusHpGOinodOknRrvdmhJLPTq-OUyOTOqD3j125fJ2-PDdvWcrjdPL6v7dao5VEPKMBe6LEulhahFAQWnZVkXmc5zYEBZBk2toEGlC8goNYJTESmYqgZhFG_4MrmZ7x68-xgxDHLvRm_jS8lEzlklOOPRxWaX9i4Ej0YefPeu_CSByiNlOVOWkbL8oSyzGOJzKESz3aH_O_1P6htGwYGP</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Qiu, Jiang-Yuan</creator><creator>Feng, Hua-Zhang</creator><creator>Chen, Zhao-Hui</creator><creator>Ruan, Shu-Hong</creator><creator>Chen, Yan-Ping</creator><creator>Xu, Ting-Ting</creator><creator>Su, Jing-Yun</creator><creator>Ha, En-Na</creator><creator>Wang, Lu-Yang</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1626-0619</orcidid></search><sort><creationdate>20220601</creationdate><title>Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation</title><author>Qiu, Jiang-Yuan ; Feng, Hua-Zhang ; Chen, Zhao-Hui ; Ruan, Shu-Hong ; Chen, Yan-Ping ; Xu, Ting-Ting ; Su, Jing-Yun ; Ha, En-Na ; Wang, Lu-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2e56c888ac66b67173088b74c551210241dba1deac71400f6306019f9b16fa3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anatase</topic><topic>Biomaterials</topic><topic>Carbon dioxide</topic><topic>Catalytic activity</topic><topic>Chemistry and Materials Science</topic><topic>Energy</topic><topic>Engineering</topic><topic>Ethylenediamine</topic><topic>Hydrogen production</topic><topic>Lithium</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>Nanosheets</topic><topic>Original Article</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Physical Chemistry</topic><topic>Room temperature</topic><topic>Selectivity</topic><topic>Solar energy conversion</topic><topic>Surface defects</topic><topic>Titanium dioxide</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Jiang-Yuan</creatorcontrib><creatorcontrib>Feng, Hua-Zhang</creatorcontrib><creatorcontrib>Chen, Zhao-Hui</creatorcontrib><creatorcontrib>Ruan, Shu-Hong</creatorcontrib><creatorcontrib>Chen, Yan-Ping</creatorcontrib><creatorcontrib>Xu, Ting-Ting</creatorcontrib><creatorcontrib>Su, Jing-Yun</creatorcontrib><creatorcontrib>Ha, En-Na</creatorcontrib><creatorcontrib>Wang, Lu-Yang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Jiang-Yuan</au><au>Feng, Hua-Zhang</au><au>Chen, Zhao-Hui</au><au>Ruan, Shu-Hong</au><au>Chen, Yan-Ping</au><au>Xu, Ting-Ting</au><au>Su, Jing-Yun</au><au>Ha, En-Na</au><au>Wang, Lu-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>2074</spage><epage>2083</epage><pages>2074-2083</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Defect engineering greatly enhances the catalytic activity of transition metal semiconductor photocatalysts. Recently, localized surface defects engineering has been intensively researched, but it still remains challenges on how to tilt the balance to the controllable construction of surface defects rather than bulk ones. Here, we report a facile room-temperature solution processing strategy on (001) facet exposed anatase TiO 2 nanosheets (ATO), in which localized defects are generated on the surface selectivity with high concentration. To achieve the aspect, lithium-ethylenediamine (Li-EDA) treatment is carried out on (001) facet exposed ATO under a mild condition. The optimized sample exhibits outstanding photocatalytic H 2 production rates of 9.28 mmol·g −1 ·h −1 with loading 0.5 wt% Pt as co-catalyst (AM 1.5), which is nearly 7.5 times higher than that of the pristine ATO. This defect engineering strategy of ATO photocatalyst will spark the ideas for the defects engineering and semiconductor photocatalyst, which is with important application prospect in solar energy conversion, including hydrogen generation and carbon dioxide reduction. Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-021-01929-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1626-0619</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2022-06, Vol.41 (6), p.2074-2083
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2653296323
source SpringerLink Journals; Alma/SFX Local Collection
subjects Anatase
Biomaterials
Carbon dioxide
Catalytic activity
Chemistry and Materials Science
Energy
Engineering
Ethylenediamine
Hydrogen production
Lithium
Materials Engineering
Materials Science
Metallic Materials
Nanoscale Science and Technology
Nanosheets
Original Article
Photocatalysis
Photocatalysts
Physical Chemistry
Room temperature
Selectivity
Solar energy conversion
Surface defects
Titanium dioxide
Transition metals
title Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20introduction%20of%20surface%20defects%20in%20anatase%20TiO2%20nanosheets%20for%20highly%20efficient%20photocatalytic%20hydrogen%20generation&rft.jtitle=Rare%20metals&rft.au=Qiu,%20Jiang-Yuan&rft.date=2022-06-01&rft.volume=41&rft.issue=6&rft.spage=2074&rft.epage=2083&rft.pages=2074-2083&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-021-01929-4&rft_dat=%3Cproquest_cross%3E2653296323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653296323&rft_id=info:pmid/&rfr_iscdi=true