Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation
Defect engineering greatly enhances the catalytic activity of transition metal semiconductor photocatalysts. Recently, localized surface defects engineering has been intensively researched, but it still remains challenges on how to tilt the balance to the controllable construction of surface defects...
Gespeichert in:
Veröffentlicht in: | Rare metals 2022-06, Vol.41 (6), p.2074-2083 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2083 |
---|---|
container_issue | 6 |
container_start_page | 2074 |
container_title | Rare metals |
container_volume | 41 |
creator | Qiu, Jiang-Yuan Feng, Hua-Zhang Chen, Zhao-Hui Ruan, Shu-Hong Chen, Yan-Ping Xu, Ting-Ting Su, Jing-Yun Ha, En-Na Wang, Lu-Yang |
description | Defect engineering greatly enhances the catalytic activity of transition metal semiconductor photocatalysts. Recently, localized surface defects engineering has been intensively researched, but it still remains challenges on how to tilt the balance to the controllable construction of surface defects rather than bulk ones. Here, we report a facile room-temperature solution processing strategy on (001) facet exposed anatase TiO
2
nanosheets (ATO), in which localized defects are generated on the surface selectivity with high concentration. To achieve the aspect, lithium-ethylenediamine (Li-EDA) treatment is carried out on (001) facet exposed ATO under a mild condition. The optimized sample exhibits outstanding photocatalytic H
2
production rates of 9.28 mmol·g
−1
·h
−1
with loading 0.5 wt% Pt as co-catalyst (AM 1.5), which is nearly 7.5 times higher than that of the pristine ATO. This defect engineering strategy of ATO photocatalyst will spark the ideas for the defects engineering and semiconductor photocatalyst, which is with important application prospect in solar energy conversion, including hydrogen generation and carbon dioxide reduction.
Graphical abstract |
doi_str_mv | 10.1007/s12598-021-01929-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653296323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653296323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2e56c888ac66b67173088b74c551210241dba1deac71400f6306019f9b16fa3d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYsouK5-AU8Bz9VM0qbtURb_wcIeXM8hTSfbLjVZk1Yo-OHNWsGbh2FmeO_NwC9JroHeAqXFXQCWV2VKGaQUKlal2UmygFIUaQFlfhpnSqOUMzhPLkLYU5plQtBF8vWKPeqh-0TS2cG7ZoyLs8QZEkZvlEbSoImOEHWirBpUQLLtNoxYZV1oEaNknCdtt2v7iaAxne7QDuTQusHpGOinodOknRrvdmhJLPTq-OUyOTOqD3j125fJ2-PDdvWcrjdPL6v7dao5VEPKMBe6LEulhahFAQWnZVkXmc5zYEBZBk2toEGlC8goNYJTESmYqgZhFG_4MrmZ7x68-xgxDHLvRm_jS8lEzlklOOPRxWaX9i4Ej0YefPeu_CSByiNlOVOWkbL8oSyzGOJzKESz3aH_O_1P6htGwYGP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653296323</pqid></control><display><type>article</type><title>Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Qiu, Jiang-Yuan ; Feng, Hua-Zhang ; Chen, Zhao-Hui ; Ruan, Shu-Hong ; Chen, Yan-Ping ; Xu, Ting-Ting ; Su, Jing-Yun ; Ha, En-Na ; Wang, Lu-Yang</creator><creatorcontrib>Qiu, Jiang-Yuan ; Feng, Hua-Zhang ; Chen, Zhao-Hui ; Ruan, Shu-Hong ; Chen, Yan-Ping ; Xu, Ting-Ting ; Su, Jing-Yun ; Ha, En-Na ; Wang, Lu-Yang</creatorcontrib><description>Defect engineering greatly enhances the catalytic activity of transition metal semiconductor photocatalysts. Recently, localized surface defects engineering has been intensively researched, but it still remains challenges on how to tilt the balance to the controllable construction of surface defects rather than bulk ones. Here, we report a facile room-temperature solution processing strategy on (001) facet exposed anatase TiO
2
nanosheets (ATO), in which localized defects are generated on the surface selectivity with high concentration. To achieve the aspect, lithium-ethylenediamine (Li-EDA) treatment is carried out on (001) facet exposed ATO under a mild condition. The optimized sample exhibits outstanding photocatalytic H
2
production rates of 9.28 mmol·g
−1
·h
−1
with loading 0.5 wt% Pt as co-catalyst (AM 1.5), which is nearly 7.5 times higher than that of the pristine ATO. This defect engineering strategy of ATO photocatalyst will spark the ideas for the defects engineering and semiconductor photocatalyst, which is with important application prospect in solar energy conversion, including hydrogen generation and carbon dioxide reduction.
Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-021-01929-4</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Anatase ; Biomaterials ; Carbon dioxide ; Catalytic activity ; Chemistry and Materials Science ; Energy ; Engineering ; Ethylenediamine ; Hydrogen production ; Lithium ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoscale Science and Technology ; Nanosheets ; Original Article ; Photocatalysis ; Photocatalysts ; Physical Chemistry ; Room temperature ; Selectivity ; Solar energy conversion ; Surface defects ; Titanium dioxide ; Transition metals</subject><ispartof>Rare metals, 2022-06, Vol.41 (6), p.2074-2083</ispartof><rights>Youke Publishing Co.,Ltd 2022</rights><rights>Youke Publishing Co.,Ltd 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2e56c888ac66b67173088b74c551210241dba1deac71400f6306019f9b16fa3d3</citedby><cites>FETCH-LOGICAL-c319t-2e56c888ac66b67173088b74c551210241dba1deac71400f6306019f9b16fa3d3</cites><orcidid>0000-0003-1626-0619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-021-01929-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-021-01929-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Qiu, Jiang-Yuan</creatorcontrib><creatorcontrib>Feng, Hua-Zhang</creatorcontrib><creatorcontrib>Chen, Zhao-Hui</creatorcontrib><creatorcontrib>Ruan, Shu-Hong</creatorcontrib><creatorcontrib>Chen, Yan-Ping</creatorcontrib><creatorcontrib>Xu, Ting-Ting</creatorcontrib><creatorcontrib>Su, Jing-Yun</creatorcontrib><creatorcontrib>Ha, En-Na</creatorcontrib><creatorcontrib>Wang, Lu-Yang</creatorcontrib><title>Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Defect engineering greatly enhances the catalytic activity of transition metal semiconductor photocatalysts. Recently, localized surface defects engineering has been intensively researched, but it still remains challenges on how to tilt the balance to the controllable construction of surface defects rather than bulk ones. Here, we report a facile room-temperature solution processing strategy on (001) facet exposed anatase TiO
2
nanosheets (ATO), in which localized defects are generated on the surface selectivity with high concentration. To achieve the aspect, lithium-ethylenediamine (Li-EDA) treatment is carried out on (001) facet exposed ATO under a mild condition. The optimized sample exhibits outstanding photocatalytic H
2
production rates of 9.28 mmol·g
−1
·h
−1
with loading 0.5 wt% Pt as co-catalyst (AM 1.5), which is nearly 7.5 times higher than that of the pristine ATO. This defect engineering strategy of ATO photocatalyst will spark the ideas for the defects engineering and semiconductor photocatalyst, which is with important application prospect in solar energy conversion, including hydrogen generation and carbon dioxide reduction.
Graphical abstract</description><subject>Anatase</subject><subject>Biomaterials</subject><subject>Carbon dioxide</subject><subject>Catalytic activity</subject><subject>Chemistry and Materials Science</subject><subject>Energy</subject><subject>Engineering</subject><subject>Ethylenediamine</subject><subject>Hydrogen production</subject><subject>Lithium</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>Nanosheets</subject><subject>Original Article</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Physical Chemistry</subject><subject>Room temperature</subject><subject>Selectivity</subject><subject>Solar energy conversion</subject><subject>Surface defects</subject><subject>Titanium dioxide</subject><subject>Transition metals</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYsouK5-AU8Bz9VM0qbtURb_wcIeXM8hTSfbLjVZk1Yo-OHNWsGbh2FmeO_NwC9JroHeAqXFXQCWV2VKGaQUKlal2UmygFIUaQFlfhpnSqOUMzhPLkLYU5plQtBF8vWKPeqh-0TS2cG7ZoyLs8QZEkZvlEbSoImOEHWirBpUQLLtNoxYZV1oEaNknCdtt2v7iaAxne7QDuTQusHpGOinodOknRrvdmhJLPTq-OUyOTOqD3j125fJ2-PDdvWcrjdPL6v7dao5VEPKMBe6LEulhahFAQWnZVkXmc5zYEBZBk2toEGlC8goNYJTESmYqgZhFG_4MrmZ7x68-xgxDHLvRm_jS8lEzlklOOPRxWaX9i4Ej0YefPeu_CSByiNlOVOWkbL8oSyzGOJzKESz3aH_O_1P6htGwYGP</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Qiu, Jiang-Yuan</creator><creator>Feng, Hua-Zhang</creator><creator>Chen, Zhao-Hui</creator><creator>Ruan, Shu-Hong</creator><creator>Chen, Yan-Ping</creator><creator>Xu, Ting-Ting</creator><creator>Su, Jing-Yun</creator><creator>Ha, En-Na</creator><creator>Wang, Lu-Yang</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1626-0619</orcidid></search><sort><creationdate>20220601</creationdate><title>Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation</title><author>Qiu, Jiang-Yuan ; Feng, Hua-Zhang ; Chen, Zhao-Hui ; Ruan, Shu-Hong ; Chen, Yan-Ping ; Xu, Ting-Ting ; Su, Jing-Yun ; Ha, En-Na ; Wang, Lu-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2e56c888ac66b67173088b74c551210241dba1deac71400f6306019f9b16fa3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anatase</topic><topic>Biomaterials</topic><topic>Carbon dioxide</topic><topic>Catalytic activity</topic><topic>Chemistry and Materials Science</topic><topic>Energy</topic><topic>Engineering</topic><topic>Ethylenediamine</topic><topic>Hydrogen production</topic><topic>Lithium</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>Nanosheets</topic><topic>Original Article</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Physical Chemistry</topic><topic>Room temperature</topic><topic>Selectivity</topic><topic>Solar energy conversion</topic><topic>Surface defects</topic><topic>Titanium dioxide</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Jiang-Yuan</creatorcontrib><creatorcontrib>Feng, Hua-Zhang</creatorcontrib><creatorcontrib>Chen, Zhao-Hui</creatorcontrib><creatorcontrib>Ruan, Shu-Hong</creatorcontrib><creatorcontrib>Chen, Yan-Ping</creatorcontrib><creatorcontrib>Xu, Ting-Ting</creatorcontrib><creatorcontrib>Su, Jing-Yun</creatorcontrib><creatorcontrib>Ha, En-Na</creatorcontrib><creatorcontrib>Wang, Lu-Yang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Jiang-Yuan</au><au>Feng, Hua-Zhang</au><au>Chen, Zhao-Hui</au><au>Ruan, Shu-Hong</au><au>Chen, Yan-Ping</au><au>Xu, Ting-Ting</au><au>Su, Jing-Yun</au><au>Ha, En-Na</au><au>Wang, Lu-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>2074</spage><epage>2083</epage><pages>2074-2083</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Defect engineering greatly enhances the catalytic activity of transition metal semiconductor photocatalysts. Recently, localized surface defects engineering has been intensively researched, but it still remains challenges on how to tilt the balance to the controllable construction of surface defects rather than bulk ones. Here, we report a facile room-temperature solution processing strategy on (001) facet exposed anatase TiO
2
nanosheets (ATO), in which localized defects are generated on the surface selectivity with high concentration. To achieve the aspect, lithium-ethylenediamine (Li-EDA) treatment is carried out on (001) facet exposed ATO under a mild condition. The optimized sample exhibits outstanding photocatalytic H
2
production rates of 9.28 mmol·g
−1
·h
−1
with loading 0.5 wt% Pt as co-catalyst (AM 1.5), which is nearly 7.5 times higher than that of the pristine ATO. This defect engineering strategy of ATO photocatalyst will spark the ideas for the defects engineering and semiconductor photocatalyst, which is with important application prospect in solar energy conversion, including hydrogen generation and carbon dioxide reduction.
Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-021-01929-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1626-0619</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2022-06, Vol.41 (6), p.2074-2083 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2653296323 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Anatase Biomaterials Carbon dioxide Catalytic activity Chemistry and Materials Science Energy Engineering Ethylenediamine Hydrogen production Lithium Materials Engineering Materials Science Metallic Materials Nanoscale Science and Technology Nanosheets Original Article Photocatalysis Photocatalysts Physical Chemistry Room temperature Selectivity Solar energy conversion Surface defects Titanium dioxide Transition metals |
title | Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20introduction%20of%20surface%20defects%20in%20anatase%20TiO2%20nanosheets%20for%20highly%20efficient%20photocatalytic%20hydrogen%20generation&rft.jtitle=Rare%20metals&rft.au=Qiu,%20Jiang-Yuan&rft.date=2022-06-01&rft.volume=41&rft.issue=6&rft.spage=2074&rft.epage=2083&rft.pages=2074-2083&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-021-01929-4&rft_dat=%3Cproquest_cross%3E2653296323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653296323&rft_id=info:pmid/&rfr_iscdi=true |