Combinatorial test case generation from sequence diagram using optimization algorithms

Combinatorial Testing plays an essential role in generating optimized test cases to detect defects that occurred by interactions among input parameters of the systems. To generate combinatorial test cases, information about parameters, values and constraints is essential. This information is given t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of system assurance engineering and management 2022-03, Vol.13 (Suppl 1), p.642-657
Hauptverfasser: Tatale, Subhash, Chandra Prakash, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue Suppl 1
container_start_page 642
container_title International journal of system assurance engineering and management
container_volume 13
creator Tatale, Subhash
Chandra Prakash, V.
description Combinatorial Testing plays an essential role in generating optimized test cases to detect defects that occurred by interactions among input parameters of the systems. To generate combinatorial test cases, information about parameters, values and constraints is essential. This information is given to the system manually in the current practice, making it difficult to test software systems. UML Sequence Diagram describes the dynamic behaviour of the software system. The authors presented a novel approach to generate combinatorial test cases from UML Sequence Diagram in this paper. The Combinatorial Test Design Model (CTDM) is used to get information like input parameters, values, and constraints for generating combinatorial test cases. Extracting this information from UML Sequence Diagrams and identifying interactions among the input parameters is a challenging task. A rule-based approach is used to extract the information related to CTDM from UML Sequence Diagram. Once this information is extracted, combinatorial test cases are generated using Optimization algorithms, namely Particle Swarm Optimization and Simulated Annealing. This presented work is a study to generate various combinatorial test cases through optimisation algorithms which will aid in the management of Indian Railways. The significant contributions of this research are (1) Extraction of parameters, values and constraints from UML Sequence Diagram by using the rule-based algorithm. (2) Generation of combinatorial test cases from that extracted information using optimization algorithms. A case study of the Concession Management Subsystem of Indian Railways is presented to demonstrate the proposed research work. The authors recommend that All Combination testing, Particle Swarm Optimization algorithm and Simulated Annealing algorithm be used for simple, moderate, and complex UML Sequence Diagrams to generate a minimum number of combinatorial test cases.
doi_str_mv 10.1007/s13198-021-01579-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2653296249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653296249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4f778606af44df52a85adf69327e1ada1e7ec0534e93aabf4f7e67706cc673413</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsNT-AU8Bz9F8bbI5SvELCl7Ua5juJmtKd1OTlKK_3tgVvHmaOTzvO8NTVZeUXFNC1E2inOoGE0YxobXS-HBSzYhWEgsumtPjXmPZEH1eLVLaEEIoo4IJMqvelmFY-xFyiB62KNuUUQvJot6ONkL2YUQuhgEl-7G3Y2tR56GPMKB98mOPwi77wX9NIGz7UpPfh3RRnTnYJrv4nfPq9f7uZfmIV88PT8vbFW7LyxkLp1QjiQQnROdqBk0NnZOaM2UpdECtsi2pubCaA6xd4a1Uisi2lYoLyufV1dS7i6H8l7LZhH0cy0nDZM2ZlkzoQrGJamNIKVpndtEPED8NJeZHoZkUmqLQHBWaQwnxKZQKPPY2_lX_k_oGLFB2DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653296249</pqid></control><display><type>article</type><title>Combinatorial test case generation from sequence diagram using optimization algorithms</title><source>SpringerNature Journals</source><creator>Tatale, Subhash ; Chandra Prakash, V.</creator><creatorcontrib>Tatale, Subhash ; Chandra Prakash, V.</creatorcontrib><description>Combinatorial Testing plays an essential role in generating optimized test cases to detect defects that occurred by interactions among input parameters of the systems. To generate combinatorial test cases, information about parameters, values and constraints is essential. This information is given to the system manually in the current practice, making it difficult to test software systems. UML Sequence Diagram describes the dynamic behaviour of the software system. The authors presented a novel approach to generate combinatorial test cases from UML Sequence Diagram in this paper. The Combinatorial Test Design Model (CTDM) is used to get information like input parameters, values, and constraints for generating combinatorial test cases. Extracting this information from UML Sequence Diagrams and identifying interactions among the input parameters is a challenging task. A rule-based approach is used to extract the information related to CTDM from UML Sequence Diagram. Once this information is extracted, combinatorial test cases are generated using Optimization algorithms, namely Particle Swarm Optimization and Simulated Annealing. This presented work is a study to generate various combinatorial test cases through optimisation algorithms which will aid in the management of Indian Railways. The significant contributions of this research are (1) Extraction of parameters, values and constraints from UML Sequence Diagram by using the rule-based algorithm. (2) Generation of combinatorial test cases from that extracted information using optimization algorithms. A case study of the Concession Management Subsystem of Indian Railways is presented to demonstrate the proposed research work. The authors recommend that All Combination testing, Particle Swarm Optimization algorithm and Simulated Annealing algorithm be used for simple, moderate, and complex UML Sequence Diagrams to generate a minimum number of combinatorial test cases.</description><identifier>ISSN: 0975-6809</identifier><identifier>EISSN: 0976-4348</identifier><identifier>DOI: 10.1007/s13198-021-01579-w</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Combinatorial analysis ; Engineering ; Engineering Economics ; Logistics ; Marketing ; Optimization algorithms ; Organization ; Original Article ; Parameter identification ; Particle swarm optimization ; Quality Control ; Railways ; Reliability ; Safety and Risk ; Simulated annealing ; Software ; Subsystems</subject><ispartof>International journal of system assurance engineering and management, 2022-03, Vol.13 (Suppl 1), p.642-657</ispartof><rights>The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021</rights><rights>The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4f778606af44df52a85adf69327e1ada1e7ec0534e93aabf4f7e67706cc673413</citedby><cites>FETCH-LOGICAL-c319t-4f778606af44df52a85adf69327e1ada1e7ec0534e93aabf4f7e67706cc673413</cites><orcidid>0000-0003-1533-6335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13198-021-01579-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13198-021-01579-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tatale, Subhash</creatorcontrib><creatorcontrib>Chandra Prakash, V.</creatorcontrib><title>Combinatorial test case generation from sequence diagram using optimization algorithms</title><title>International journal of system assurance engineering and management</title><addtitle>Int J Syst Assur Eng Manag</addtitle><description>Combinatorial Testing plays an essential role in generating optimized test cases to detect defects that occurred by interactions among input parameters of the systems. To generate combinatorial test cases, information about parameters, values and constraints is essential. This information is given to the system manually in the current practice, making it difficult to test software systems. UML Sequence Diagram describes the dynamic behaviour of the software system. The authors presented a novel approach to generate combinatorial test cases from UML Sequence Diagram in this paper. The Combinatorial Test Design Model (CTDM) is used to get information like input parameters, values, and constraints for generating combinatorial test cases. Extracting this information from UML Sequence Diagrams and identifying interactions among the input parameters is a challenging task. A rule-based approach is used to extract the information related to CTDM from UML Sequence Diagram. Once this information is extracted, combinatorial test cases are generated using Optimization algorithms, namely Particle Swarm Optimization and Simulated Annealing. This presented work is a study to generate various combinatorial test cases through optimisation algorithms which will aid in the management of Indian Railways. The significant contributions of this research are (1) Extraction of parameters, values and constraints from UML Sequence Diagram by using the rule-based algorithm. (2) Generation of combinatorial test cases from that extracted information using optimization algorithms. A case study of the Concession Management Subsystem of Indian Railways is presented to demonstrate the proposed research work. The authors recommend that All Combination testing, Particle Swarm Optimization algorithm and Simulated Annealing algorithm be used for simple, moderate, and complex UML Sequence Diagrams to generate a minimum number of combinatorial test cases.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Engineering</subject><subject>Engineering Economics</subject><subject>Logistics</subject><subject>Marketing</subject><subject>Optimization algorithms</subject><subject>Organization</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Particle swarm optimization</subject><subject>Quality Control</subject><subject>Railways</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Simulated annealing</subject><subject>Software</subject><subject>Subsystems</subject><issn>0975-6809</issn><issn>0976-4348</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsNT-AU8Bz9F8bbI5SvELCl7Ua5juJmtKd1OTlKK_3tgVvHmaOTzvO8NTVZeUXFNC1E2inOoGE0YxobXS-HBSzYhWEgsumtPjXmPZEH1eLVLaEEIoo4IJMqvelmFY-xFyiB62KNuUUQvJot6ONkL2YUQuhgEl-7G3Y2tR56GPMKB98mOPwi77wX9NIGz7UpPfh3RRnTnYJrv4nfPq9f7uZfmIV88PT8vbFW7LyxkLp1QjiQQnROdqBk0NnZOaM2UpdECtsi2pubCaA6xd4a1Uisi2lYoLyufV1dS7i6H8l7LZhH0cy0nDZM2ZlkzoQrGJamNIKVpndtEPED8NJeZHoZkUmqLQHBWaQwnxKZQKPPY2_lX_k_oGLFB2DQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Tatale, Subhash</creator><creator>Chandra Prakash, V.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1533-6335</orcidid></search><sort><creationdate>20220301</creationdate><title>Combinatorial test case generation from sequence diagram using optimization algorithms</title><author>Tatale, Subhash ; Chandra Prakash, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4f778606af44df52a85adf69327e1ada1e7ec0534e93aabf4f7e67706cc673413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Engineering</topic><topic>Engineering Economics</topic><topic>Logistics</topic><topic>Marketing</topic><topic>Optimization algorithms</topic><topic>Organization</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Particle swarm optimization</topic><topic>Quality Control</topic><topic>Railways</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Simulated annealing</topic><topic>Software</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tatale, Subhash</creatorcontrib><creatorcontrib>Chandra Prakash, V.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of system assurance engineering and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tatale, Subhash</au><au>Chandra Prakash, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinatorial test case generation from sequence diagram using optimization algorithms</atitle><jtitle>International journal of system assurance engineering and management</jtitle><stitle>Int J Syst Assur Eng Manag</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>13</volume><issue>Suppl 1</issue><spage>642</spage><epage>657</epage><pages>642-657</pages><issn>0975-6809</issn><eissn>0976-4348</eissn><abstract>Combinatorial Testing plays an essential role in generating optimized test cases to detect defects that occurred by interactions among input parameters of the systems. To generate combinatorial test cases, information about parameters, values and constraints is essential. This information is given to the system manually in the current practice, making it difficult to test software systems. UML Sequence Diagram describes the dynamic behaviour of the software system. The authors presented a novel approach to generate combinatorial test cases from UML Sequence Diagram in this paper. The Combinatorial Test Design Model (CTDM) is used to get information like input parameters, values, and constraints for generating combinatorial test cases. Extracting this information from UML Sequence Diagrams and identifying interactions among the input parameters is a challenging task. A rule-based approach is used to extract the information related to CTDM from UML Sequence Diagram. Once this information is extracted, combinatorial test cases are generated using Optimization algorithms, namely Particle Swarm Optimization and Simulated Annealing. This presented work is a study to generate various combinatorial test cases through optimisation algorithms which will aid in the management of Indian Railways. The significant contributions of this research are (1) Extraction of parameters, values and constraints from UML Sequence Diagram by using the rule-based algorithm. (2) Generation of combinatorial test cases from that extracted information using optimization algorithms. A case study of the Concession Management Subsystem of Indian Railways is presented to demonstrate the proposed research work. The authors recommend that All Combination testing, Particle Swarm Optimization algorithm and Simulated Annealing algorithm be used for simple, moderate, and complex UML Sequence Diagrams to generate a minimum number of combinatorial test cases.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s13198-021-01579-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1533-6335</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0975-6809
ispartof International journal of system assurance engineering and management, 2022-03, Vol.13 (Suppl 1), p.642-657
issn 0975-6809
0976-4348
language eng
recordid cdi_proquest_journals_2653296249
source SpringerNature Journals
subjects Algorithms
Combinatorial analysis
Engineering
Engineering Economics
Logistics
Marketing
Optimization algorithms
Organization
Original Article
Parameter identification
Particle swarm optimization
Quality Control
Railways
Reliability
Safety and Risk
Simulated annealing
Software
Subsystems
title Combinatorial test case generation from sequence diagram using optimization algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinatorial%20test%20case%20generation%20from%20sequence%20diagram%20using%20optimization%20algorithms&rft.jtitle=International%20journal%20of%20system%20assurance%20engineering%20and%20management&rft.au=Tatale,%20Subhash&rft.date=2022-03-01&rft.volume=13&rft.issue=Suppl%201&rft.spage=642&rft.epage=657&rft.pages=642-657&rft.issn=0975-6809&rft.eissn=0976-4348&rft_id=info:doi/10.1007/s13198-021-01579-w&rft_dat=%3Cproquest_cross%3E2653296249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653296249&rft_id=info:pmid/&rfr_iscdi=true