Decision Making Model for Municipal Wastewater Conventional Secondary Treatment with Bayesian Networks

Technical, economic, regulatory, environmental, and social and political interests make the process of selecting an appropriate wastewater treatment technology complex. Although this problem has already been addressed from the dimensioning approach, our proposal in this research, a model of decision...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-04, Vol.14 (8), p.1231
Hauptverfasser: Medina, Edgardo, Fonseca, Carlos Roberto, Gallego-Alarcón, Iván, Morales-Nápoles, Oswaldo, Gómez-Albores, Miguel Ángel, Esparza-Soto, Mario, Mastachi-Loza, Carlos Alberto, García-Pulido, Daury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1231
container_title Water (Basel)
container_volume 14
creator Medina, Edgardo
Fonseca, Carlos Roberto
Gallego-Alarcón, Iván
Morales-Nápoles, Oswaldo
Gómez-Albores, Miguel Ángel
Esparza-Soto, Mario
Mastachi-Loza, Carlos Alberto
García-Pulido, Daury
description Technical, economic, regulatory, environmental, and social and political interests make the process of selecting an appropriate wastewater treatment technology complex. Although this problem has already been addressed from the dimensioning approach, our proposal in this research, a model of decision making for conventional secondary treatment of municipal wastewater through continuous-discrete, non-parametric Bayesian networks was developed. The most suitable network was structured in unit processes, independent of each other. Validation, with data in a mostly Mexican context, provided a positive predictive power of 83.5%, an excellent kappa (0.77 > 0.75), and the criterion line was surpassed with the location of the model in a receiver operating characteristic (ROC) graph, so the model can be implemented in this region. The final configuration of the Bayesian network allows the methodology to be easily extended to other types of treatments, wastewater, and to other regions.
doi_str_mv 10.3390/w14081231
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2653041230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791347553</galeid><sourcerecordid>A791347553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-fd409e7c1b379c92c1879e083106229570d2342921f815a18ae1d93a0b40e4a03</originalsourceid><addsrcrecordid>eNpNUE1PAjEQbYwmEuTgP2jiycNiv5bdHhE_E9CDGI-b0p1iYdliW9zw7y3BGGcOM3kzbzLvIXRJyZBzSW46KkhJGacnqMdIwTMhBD3915-jQQgrkkLIssxJD5k70DZY1-KZWtt2iWeuhgYb5_Fs11ptt6rBHypE6FQEjyeu_YY2JkLC30C7tlZ-j-ceVNykAe5s_MS3ag_Bqha_QOycX4cLdGZUE2DwW_vo_eF-PnnKpq-Pz5PxNNOc05iZWhAJhaYLXkgtmaZlIYGUnJIRYzIvSM24YJJRU9Jc0VIBrSVXZCEICEV4H10d7269-9pBiNXK7Xz6NVRslHMikjuHreFxa6kaqGxrXPRKp6xhY5MkMDbh40JSLoo854lwfSRo70LwYKqtt5skvKKkOlhf_VnPfwCGYnSv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653041230</pqid></control><display><type>article</type><title>Decision Making Model for Municipal Wastewater Conventional Secondary Treatment with Bayesian Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Medina, Edgardo ; Fonseca, Carlos Roberto ; Gallego-Alarcón, Iván ; Morales-Nápoles, Oswaldo ; Gómez-Albores, Miguel Ángel ; Esparza-Soto, Mario ; Mastachi-Loza, Carlos Alberto ; García-Pulido, Daury</creator><creatorcontrib>Medina, Edgardo ; Fonseca, Carlos Roberto ; Gallego-Alarcón, Iván ; Morales-Nápoles, Oswaldo ; Gómez-Albores, Miguel Ángel ; Esparza-Soto, Mario ; Mastachi-Loza, Carlos Alberto ; García-Pulido, Daury</creatorcontrib><description>Technical, economic, regulatory, environmental, and social and political interests make the process of selecting an appropriate wastewater treatment technology complex. Although this problem has already been addressed from the dimensioning approach, our proposal in this research, a model of decision making for conventional secondary treatment of municipal wastewater through continuous-discrete, non-parametric Bayesian networks was developed. The most suitable network was structured in unit processes, independent of each other. Validation, with data in a mostly Mexican context, provided a positive predictive power of 83.5%, an excellent kappa (0.77 &gt; 0.75), and the criterion line was surpassed with the location of the model in a receiver operating characteristic (ROC) graph, so the model can be implemented in this region. The final configuration of the Bayesian network allows the methodology to be easily extended to other types of treatments, wastewater, and to other regions.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w14081231</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Bayesian analysis ; Business metrics ; Decision making ; Environmental impact ; Environmental law ; Intelligent systems ; Municipal wastewater ; Probability ; Purification ; Sewage ; Variables ; Wastewater treatment ; Water quality ; Water treatment</subject><ispartof>Water (Basel), 2022-04, Vol.14 (8), p.1231</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-fd409e7c1b379c92c1879e083106229570d2342921f815a18ae1d93a0b40e4a03</citedby><cites>FETCH-LOGICAL-c331t-fd409e7c1b379c92c1879e083106229570d2342921f815a18ae1d93a0b40e4a03</cites><orcidid>0000-0001-9516-1170 ; 0000-0002-6313-9187 ; 0000-0002-6764-4674 ; 0000-0002-3377-6564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Medina, Edgardo</creatorcontrib><creatorcontrib>Fonseca, Carlos Roberto</creatorcontrib><creatorcontrib>Gallego-Alarcón, Iván</creatorcontrib><creatorcontrib>Morales-Nápoles, Oswaldo</creatorcontrib><creatorcontrib>Gómez-Albores, Miguel Ángel</creatorcontrib><creatorcontrib>Esparza-Soto, Mario</creatorcontrib><creatorcontrib>Mastachi-Loza, Carlos Alberto</creatorcontrib><creatorcontrib>García-Pulido, Daury</creatorcontrib><title>Decision Making Model for Municipal Wastewater Conventional Secondary Treatment with Bayesian Networks</title><title>Water (Basel)</title><description>Technical, economic, regulatory, environmental, and social and political interests make the process of selecting an appropriate wastewater treatment technology complex. Although this problem has already been addressed from the dimensioning approach, our proposal in this research, a model of decision making for conventional secondary treatment of municipal wastewater through continuous-discrete, non-parametric Bayesian networks was developed. The most suitable network was structured in unit processes, independent of each other. Validation, with data in a mostly Mexican context, provided a positive predictive power of 83.5%, an excellent kappa (0.77 &gt; 0.75), and the criterion line was surpassed with the location of the model in a receiver operating characteristic (ROC) graph, so the model can be implemented in this region. The final configuration of the Bayesian network allows the methodology to be easily extended to other types of treatments, wastewater, and to other regions.</description><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>Business metrics</subject><subject>Decision making</subject><subject>Environmental impact</subject><subject>Environmental law</subject><subject>Intelligent systems</subject><subject>Municipal wastewater</subject><subject>Probability</subject><subject>Purification</subject><subject>Sewage</subject><subject>Variables</subject><subject>Wastewater treatment</subject><subject>Water quality</subject><subject>Water treatment</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1PAjEQbYwmEuTgP2jiycNiv5bdHhE_E9CDGI-b0p1iYdliW9zw7y3BGGcOM3kzbzLvIXRJyZBzSW46KkhJGacnqMdIwTMhBD3915-jQQgrkkLIssxJD5k70DZY1-KZWtt2iWeuhgYb5_Fs11ptt6rBHypE6FQEjyeu_YY2JkLC30C7tlZ-j-ceVNykAe5s_MS3ag_Bqha_QOycX4cLdGZUE2DwW_vo_eF-PnnKpq-Pz5PxNNOc05iZWhAJhaYLXkgtmaZlIYGUnJIRYzIvSM24YJJRU9Jc0VIBrSVXZCEICEV4H10d7269-9pBiNXK7Xz6NVRslHMikjuHreFxa6kaqGxrXPRKp6xhY5MkMDbh40JSLoo854lwfSRo70LwYKqtt5skvKKkOlhf_VnPfwCGYnSv</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Medina, Edgardo</creator><creator>Fonseca, Carlos Roberto</creator><creator>Gallego-Alarcón, Iván</creator><creator>Morales-Nápoles, Oswaldo</creator><creator>Gómez-Albores, Miguel Ángel</creator><creator>Esparza-Soto, Mario</creator><creator>Mastachi-Loza, Carlos Alberto</creator><creator>García-Pulido, Daury</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9516-1170</orcidid><orcidid>https://orcid.org/0000-0002-6313-9187</orcidid><orcidid>https://orcid.org/0000-0002-6764-4674</orcidid><orcidid>https://orcid.org/0000-0002-3377-6564</orcidid></search><sort><creationdate>20220401</creationdate><title>Decision Making Model for Municipal Wastewater Conventional Secondary Treatment with Bayesian Networks</title><author>Medina, Edgardo ; Fonseca, Carlos Roberto ; Gallego-Alarcón, Iván ; Morales-Nápoles, Oswaldo ; Gómez-Albores, Miguel Ángel ; Esparza-Soto, Mario ; Mastachi-Loza, Carlos Alberto ; García-Pulido, Daury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-fd409e7c1b379c92c1879e083106229570d2342921f815a18ae1d93a0b40e4a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>Business metrics</topic><topic>Decision making</topic><topic>Environmental impact</topic><topic>Environmental law</topic><topic>Intelligent systems</topic><topic>Municipal wastewater</topic><topic>Probability</topic><topic>Purification</topic><topic>Sewage</topic><topic>Variables</topic><topic>Wastewater treatment</topic><topic>Water quality</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medina, Edgardo</creatorcontrib><creatorcontrib>Fonseca, Carlos Roberto</creatorcontrib><creatorcontrib>Gallego-Alarcón, Iván</creatorcontrib><creatorcontrib>Morales-Nápoles, Oswaldo</creatorcontrib><creatorcontrib>Gómez-Albores, Miguel Ángel</creatorcontrib><creatorcontrib>Esparza-Soto, Mario</creatorcontrib><creatorcontrib>Mastachi-Loza, Carlos Alberto</creatorcontrib><creatorcontrib>García-Pulido, Daury</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medina, Edgardo</au><au>Fonseca, Carlos Roberto</au><au>Gallego-Alarcón, Iván</au><au>Morales-Nápoles, Oswaldo</au><au>Gómez-Albores, Miguel Ángel</au><au>Esparza-Soto, Mario</au><au>Mastachi-Loza, Carlos Alberto</au><au>García-Pulido, Daury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision Making Model for Municipal Wastewater Conventional Secondary Treatment with Bayesian Networks</atitle><jtitle>Water (Basel)</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>14</volume><issue>8</issue><spage>1231</spage><pages>1231-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Technical, economic, regulatory, environmental, and social and political interests make the process of selecting an appropriate wastewater treatment technology complex. Although this problem has already been addressed from the dimensioning approach, our proposal in this research, a model of decision making for conventional secondary treatment of municipal wastewater through continuous-discrete, non-parametric Bayesian networks was developed. The most suitable network was structured in unit processes, independent of each other. Validation, with data in a mostly Mexican context, provided a positive predictive power of 83.5%, an excellent kappa (0.77 &gt; 0.75), and the criterion line was surpassed with the location of the model in a receiver operating characteristic (ROC) graph, so the model can be implemented in this region. The final configuration of the Bayesian network allows the methodology to be easily extended to other types of treatments, wastewater, and to other regions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w14081231</doi><orcidid>https://orcid.org/0000-0001-9516-1170</orcidid><orcidid>https://orcid.org/0000-0002-6313-9187</orcidid><orcidid>https://orcid.org/0000-0002-6764-4674</orcidid><orcidid>https://orcid.org/0000-0002-3377-6564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2022-04, Vol.14 (8), p.1231
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2653041230
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Analysis
Bayesian analysis
Business metrics
Decision making
Environmental impact
Environmental law
Intelligent systems
Municipal wastewater
Probability
Purification
Sewage
Variables
Wastewater treatment
Water quality
Water treatment
title Decision Making Model for Municipal Wastewater Conventional Secondary Treatment with Bayesian Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20Making%20Model%20for%20Municipal%20Wastewater%20Conventional%20Secondary%20Treatment%20with%20Bayesian%20Networks&rft.jtitle=Water%20(Basel)&rft.au=Medina,%20Edgardo&rft.date=2022-04-01&rft.volume=14&rft.issue=8&rft.spage=1231&rft.pages=1231-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w14081231&rft_dat=%3Cgale_proqu%3EA791347553%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653041230&rft_id=info:pmid/&rft_galeid=A791347553&rfr_iscdi=true