Optimize_Prime@DravidianLangTech-ACL2022: Emotion Analysis in Tamil

This paper aims to perform an emotion analysis of social media comments in Tamil. Emotion analysis is the process of identifying the emotional context of the text. In this paper, we present the findings obtained by Team Optimize_Prime in the ACL 2022 shared task "Emotion Analysis in Tamil."...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Gokhale, Omkar, Patankar, Shantanu, Litake, Onkar, Mandke, Aditya, Kadam, Dipali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gokhale, Omkar
Patankar, Shantanu
Litake, Onkar
Mandke, Aditya
Kadam, Dipali
description This paper aims to perform an emotion analysis of social media comments in Tamil. Emotion analysis is the process of identifying the emotional context of the text. In this paper, we present the findings obtained by Team Optimize_Prime in the ACL 2022 shared task "Emotion Analysis in Tamil." The task aimed to classify social media comments into categories of emotion like Joy, Anger, Trust, Disgust, etc. The task was further divided into two subtasks, one with 11 broad categories of emotions and the other with 31 specific categories of emotion. We implemented three different approaches to tackle this problem: transformer-based models, Recurrent Neural Networks (RNNs), and Ensemble models. XLM-RoBERTa performed the best on the first task with a macro-averaged f1 score of 0.27, while MuRIL provided the best results on the second task with a macro-averaged f1 score of 0.13.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2653023549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653023549</sourcerecordid><originalsourceid>FETCH-proquest_journals_26530235493</originalsourceid><addsrcrecordid>eNqNy70KwjAUQOEgCBbtOwScC_GmqT-TpVYcCjpkL0Gj3tIkNWkFfXodfACns3xnRCLgfJGsUoAJiUNoGGOQLUEIHpHi2PVo8K3rk0ejtzuvnnhBZStlb1Kf70leVMAANrQ0rkdnaW5V-woYKFoqlcF2RsZX1QYd_zol830pi0PSefcYdOjrxg3-e4UaMsEZcJGu-X_qA4ECOQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653023549</pqid></control><display><type>article</type><title>Optimize_Prime@DravidianLangTech-ACL2022: Emotion Analysis in Tamil</title><source>Free E- Journals</source><creator>Gokhale, Omkar ; Patankar, Shantanu ; Litake, Onkar ; Mandke, Aditya ; Kadam, Dipali</creator><creatorcontrib>Gokhale, Omkar ; Patankar, Shantanu ; Litake, Onkar ; Mandke, Aditya ; Kadam, Dipali</creatorcontrib><description>This paper aims to perform an emotion analysis of social media comments in Tamil. Emotion analysis is the process of identifying the emotional context of the text. In this paper, we present the findings obtained by Team Optimize_Prime in the ACL 2022 shared task "Emotion Analysis in Tamil." The task aimed to classify social media comments into categories of emotion like Joy, Anger, Trust, Disgust, etc. The task was further divided into two subtasks, one with 11 broad categories of emotions and the other with 31 specific categories of emotion. We implemented three different approaches to tackle this problem: transformer-based models, Recurrent Neural Networks (RNNs), and Ensemble models. XLM-RoBERTa performed the best on the first task with a macro-averaged f1 score of 0.27, while MuRIL provided the best results on the second task with a macro-averaged f1 score of 0.13.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Categories ; Digital media ; Emotions ; Recurrent neural networks ; Social networks</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Gokhale, Omkar</creatorcontrib><creatorcontrib>Patankar, Shantanu</creatorcontrib><creatorcontrib>Litake, Onkar</creatorcontrib><creatorcontrib>Mandke, Aditya</creatorcontrib><creatorcontrib>Kadam, Dipali</creatorcontrib><title>Optimize_Prime@DravidianLangTech-ACL2022: Emotion Analysis in Tamil</title><title>arXiv.org</title><description>This paper aims to perform an emotion analysis of social media comments in Tamil. Emotion analysis is the process of identifying the emotional context of the text. In this paper, we present the findings obtained by Team Optimize_Prime in the ACL 2022 shared task "Emotion Analysis in Tamil." The task aimed to classify social media comments into categories of emotion like Joy, Anger, Trust, Disgust, etc. The task was further divided into two subtasks, one with 11 broad categories of emotions and the other with 31 specific categories of emotion. We implemented three different approaches to tackle this problem: transformer-based models, Recurrent Neural Networks (RNNs), and Ensemble models. XLM-RoBERTa performed the best on the first task with a macro-averaged f1 score of 0.27, while MuRIL provided the best results on the second task with a macro-averaged f1 score of 0.13.</description><subject>Categories</subject><subject>Digital media</subject><subject>Emotions</subject><subject>Recurrent neural networks</subject><subject>Social networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy70KwjAUQOEgCBbtOwScC_GmqT-TpVYcCjpkL0Gj3tIkNWkFfXodfACns3xnRCLgfJGsUoAJiUNoGGOQLUEIHpHi2PVo8K3rk0ejtzuvnnhBZStlb1Kf70leVMAANrQ0rkdnaW5V-woYKFoqlcF2RsZX1QYd_zol830pi0PSefcYdOjrxg3-e4UaMsEZcJGu-X_qA4ECOQU</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Gokhale, Omkar</creator><creator>Patankar, Shantanu</creator><creator>Litake, Onkar</creator><creator>Mandke, Aditya</creator><creator>Kadam, Dipali</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220419</creationdate><title>Optimize_Prime@DravidianLangTech-ACL2022: Emotion Analysis in Tamil</title><author>Gokhale, Omkar ; Patankar, Shantanu ; Litake, Onkar ; Mandke, Aditya ; Kadam, Dipali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26530235493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Categories</topic><topic>Digital media</topic><topic>Emotions</topic><topic>Recurrent neural networks</topic><topic>Social networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Gokhale, Omkar</creatorcontrib><creatorcontrib>Patankar, Shantanu</creatorcontrib><creatorcontrib>Litake, Onkar</creatorcontrib><creatorcontrib>Mandke, Aditya</creatorcontrib><creatorcontrib>Kadam, Dipali</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gokhale, Omkar</au><au>Patankar, Shantanu</au><au>Litake, Onkar</au><au>Mandke, Aditya</au><au>Kadam, Dipali</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimize_Prime@DravidianLangTech-ACL2022: Emotion Analysis in Tamil</atitle><jtitle>arXiv.org</jtitle><date>2022-04-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This paper aims to perform an emotion analysis of social media comments in Tamil. Emotion analysis is the process of identifying the emotional context of the text. In this paper, we present the findings obtained by Team Optimize_Prime in the ACL 2022 shared task "Emotion Analysis in Tamil." The task aimed to classify social media comments into categories of emotion like Joy, Anger, Trust, Disgust, etc. The task was further divided into two subtasks, one with 11 broad categories of emotions and the other with 31 specific categories of emotion. We implemented three different approaches to tackle this problem: transformer-based models, Recurrent Neural Networks (RNNs), and Ensemble models. XLM-RoBERTa performed the best on the first task with a macro-averaged f1 score of 0.27, while MuRIL provided the best results on the second task with a macro-averaged f1 score of 0.13.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2653023549
source Free E- Journals
subjects Categories
Digital media
Emotions
Recurrent neural networks
Social networks
title Optimize_Prime@DravidianLangTech-ACL2022: Emotion Analysis in Tamil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimize_Prime@DravidianLangTech-ACL2022:%20Emotion%20Analysis%20in%20Tamil&rft.jtitle=arXiv.org&rft.au=Gokhale,%20Omkar&rft.date=2022-04-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2653023549%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653023549&rft_id=info:pmid/&rfr_iscdi=true