Highly‐Exposed Single‐Interlayered Cu Edges Enable High‐Rate CO2‐to‐CH4 Electrosynthesis

The electrochemical CO2 reduction to CH4 is a promising approach for producing highly specific combustion fuel but has relatively poor selectivity and activity at high‐current‐density electrolysis. In this work, ultrathin CuGaO2 nanosheets with highly exposed single‐interlayered Cu edges are synthes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-04, Vol.12 (15), p.n/a
Hauptverfasser: Peng, Chen, Xu, Zikai, Luo, Gan, Yan, Shuai, Zhang, Junbo, Li, Si, Chen, Yangsheng, Chang, Lo Yueh, Wang, Zhiqiang, Sham, Tsun‐Kong, Zheng, Gengfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page
container_title Advanced energy materials
container_volume 12
creator Peng, Chen
Xu, Zikai
Luo, Gan
Yan, Shuai
Zhang, Junbo
Li, Si
Chen, Yangsheng
Chang, Lo Yueh
Wang, Zhiqiang
Sham, Tsun‐Kong
Zheng, Gengfeng
description The electrochemical CO2 reduction to CH4 is a promising approach for producing highly specific combustion fuel but has relatively poor selectivity and activity at high‐current‐density electrolysis. In this work, ultrathin CuGaO2 nanosheets with highly exposed single‐interlayered Cu edges are synthesized via an induced anisotropic growth strategy. Density functional theory calculations indicate that the exposed single‐interlayered Cu(I) edges on the (001) surface of CuGaO2 present a high‐density of single‐atomic Cu sites, which feature excellent CO2 electroreduction catalytic activity toward CH4. The CuGaO2 nanosheet catalysts exhibit efficient and stable CO2‐to‐CH4 electroreduction with Faradaic efficiency (FECH4) of 71.7% at a high current density of –1 A cm−2, corresponding to a superior CH4 partial current density of 717 ± 33 mA cm−2. This work suggests an attractive design strategy for tuning both the crystal facets and Cu–Cu distance to promote the CH4 electrosynthesis at high‐current‐density CO2 reduction. The electrochemical CO2‐to‐CH4 conversion has relatively poor selectivity at high‐current‐density electrolysis. The ultrathin CuGaO2 nanosheet catalyst features high‐density, single‐interlayered Cu edges and larger Cu–Cu distances, exhibiting an exceptional jCH4 of 717 ± 33 mA cm−2 with FECH4 of 71.7%, and an outstanding stability at a high current density of –1 A cm−2 in flow cells.
doi_str_mv 10.1002/aenm.202200195
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2652761471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652761471</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-54954a356e1a96f8b50276d91d333cd94964ccaa9b6e6ae16f52655ddbde1d183</originalsourceid><addsrcrecordid>eNo9UE1Lw0AQXUTBUnv1HPCcut_tHkuItlAt-HFeNtlpm7JN4m6K5uZP8Df6S9xS6Rxm3jzevIGH0C3BY4IxvTdQ78cUU4oxUeICDYgkPJVTji_PmNFrNAphh2NxRTBjA1TMq83W9b_fP_lX2wSwyWtVbxxEYlF34J3pwUc2OyS53UBI8toUDpLjWdS8mA6SbEUj7JrYsjlPcgdl55vQ190WQhVu0NXauACj_zlE7w_5WzZPl6vHRTZbpi1lTKSCK8ENExKIUXI9LQSmE2kVsYyx0iquJC9LY1QhQRogci2oFMLawgKxZMqG6O7k2_rm4wCh07vm4Ov4Ukdh9CJ8QqJKnVSflYNet77aG99rgvUxR33MUZ9z1LP8-em8sT_MX2zx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652761471</pqid></control><display><type>article</type><title>Highly‐Exposed Single‐Interlayered Cu Edges Enable High‐Rate CO2‐to‐CH4 Electrosynthesis</title><source>Access via Wiley Online Library</source><creator>Peng, Chen ; Xu, Zikai ; Luo, Gan ; Yan, Shuai ; Zhang, Junbo ; Li, Si ; Chen, Yangsheng ; Chang, Lo Yueh ; Wang, Zhiqiang ; Sham, Tsun‐Kong ; Zheng, Gengfeng</creator><creatorcontrib>Peng, Chen ; Xu, Zikai ; Luo, Gan ; Yan, Shuai ; Zhang, Junbo ; Li, Si ; Chen, Yangsheng ; Chang, Lo Yueh ; Wang, Zhiqiang ; Sham, Tsun‐Kong ; Zheng, Gengfeng</creatorcontrib><description>The electrochemical CO2 reduction to CH4 is a promising approach for producing highly specific combustion fuel but has relatively poor selectivity and activity at high‐current‐density electrolysis. In this work, ultrathin CuGaO2 nanosheets with highly exposed single‐interlayered Cu edges are synthesized via an induced anisotropic growth strategy. Density functional theory calculations indicate that the exposed single‐interlayered Cu(I) edges on the (001) surface of CuGaO2 present a high‐density of single‐atomic Cu sites, which feature excellent CO2 electroreduction catalytic activity toward CH4. The CuGaO2 nanosheet catalysts exhibit efficient and stable CO2‐to‐CH4 electroreduction with Faradaic efficiency (FECH4) of 71.7% at a high current density of –1 A cm−2, corresponding to a superior CH4 partial current density of 717 ± 33 mA cm−2. This work suggests an attractive design strategy for tuning both the crystal facets and Cu–Cu distance to promote the CH4 electrosynthesis at high‐current‐density CO2 reduction. The electrochemical CO2‐to‐CH4 conversion has relatively poor selectivity at high‐current‐density electrolysis. The ultrathin CuGaO2 nanosheet catalyst features high‐density, single‐interlayered Cu edges and larger Cu–Cu distances, exhibiting an exceptional jCH4 of 717 ± 33 mA cm−2 with FECH4 of 71.7%, and an outstanding stability at a high current density of –1 A cm−2 in flow cells.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202200195</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalytic activity ; CH 4 ; CO 2 reduction reaction ; CuGaO 2 nanosheets ; Current density ; Cu–Cu distance ; Density functional theory ; Electrolysis ; Electrowinning ; Exposure ; Methane ; Nanosheets ; Selectivity ; single‐interlayered copper edge</subject><ispartof>Advanced energy materials, 2022-04, Vol.12 (15), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1803-6955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202200195$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202200195$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Peng, Chen</creatorcontrib><creatorcontrib>Xu, Zikai</creatorcontrib><creatorcontrib>Luo, Gan</creatorcontrib><creatorcontrib>Yan, Shuai</creatorcontrib><creatorcontrib>Zhang, Junbo</creatorcontrib><creatorcontrib>Li, Si</creatorcontrib><creatorcontrib>Chen, Yangsheng</creatorcontrib><creatorcontrib>Chang, Lo Yueh</creatorcontrib><creatorcontrib>Wang, Zhiqiang</creatorcontrib><creatorcontrib>Sham, Tsun‐Kong</creatorcontrib><creatorcontrib>Zheng, Gengfeng</creatorcontrib><title>Highly‐Exposed Single‐Interlayered Cu Edges Enable High‐Rate CO2‐to‐CH4 Electrosynthesis</title><title>Advanced energy materials</title><description>The electrochemical CO2 reduction to CH4 is a promising approach for producing highly specific combustion fuel but has relatively poor selectivity and activity at high‐current‐density electrolysis. In this work, ultrathin CuGaO2 nanosheets with highly exposed single‐interlayered Cu edges are synthesized via an induced anisotropic growth strategy. Density functional theory calculations indicate that the exposed single‐interlayered Cu(I) edges on the (001) surface of CuGaO2 present a high‐density of single‐atomic Cu sites, which feature excellent CO2 electroreduction catalytic activity toward CH4. The CuGaO2 nanosheet catalysts exhibit efficient and stable CO2‐to‐CH4 electroreduction with Faradaic efficiency (FECH4) of 71.7% at a high current density of –1 A cm−2, corresponding to a superior CH4 partial current density of 717 ± 33 mA cm−2. This work suggests an attractive design strategy for tuning both the crystal facets and Cu–Cu distance to promote the CH4 electrosynthesis at high‐current‐density CO2 reduction. The electrochemical CO2‐to‐CH4 conversion has relatively poor selectivity at high‐current‐density electrolysis. The ultrathin CuGaO2 nanosheet catalyst features high‐density, single‐interlayered Cu edges and larger Cu–Cu distances, exhibiting an exceptional jCH4 of 717 ± 33 mA cm−2 with FECH4 of 71.7%, and an outstanding stability at a high current density of –1 A cm−2 in flow cells.</description><subject>Carbon dioxide</subject><subject>Catalytic activity</subject><subject>CH 4</subject><subject>CO 2 reduction reaction</subject><subject>CuGaO 2 nanosheets</subject><subject>Current density</subject><subject>Cu–Cu distance</subject><subject>Density functional theory</subject><subject>Electrolysis</subject><subject>Electrowinning</subject><subject>Exposure</subject><subject>Methane</subject><subject>Nanosheets</subject><subject>Selectivity</subject><subject>single‐interlayered copper edge</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UE1Lw0AQXUTBUnv1HPCcut_tHkuItlAt-HFeNtlpm7JN4m6K5uZP8Df6S9xS6Rxm3jzevIGH0C3BY4IxvTdQ78cUU4oxUeICDYgkPJVTji_PmNFrNAphh2NxRTBjA1TMq83W9b_fP_lX2wSwyWtVbxxEYlF34J3pwUc2OyS53UBI8toUDpLjWdS8mA6SbEUj7JrYsjlPcgdl55vQ190WQhVu0NXauACj_zlE7w_5WzZPl6vHRTZbpi1lTKSCK8ENExKIUXI9LQSmE2kVsYyx0iquJC9LY1QhQRogci2oFMLawgKxZMqG6O7k2_rm4wCh07vm4Ov4Ukdh9CJ8QqJKnVSflYNet77aG99rgvUxR33MUZ9z1LP8-em8sT_MX2zx</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Peng, Chen</creator><creator>Xu, Zikai</creator><creator>Luo, Gan</creator><creator>Yan, Shuai</creator><creator>Zhang, Junbo</creator><creator>Li, Si</creator><creator>Chen, Yangsheng</creator><creator>Chang, Lo Yueh</creator><creator>Wang, Zhiqiang</creator><creator>Sham, Tsun‐Kong</creator><creator>Zheng, Gengfeng</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1803-6955</orcidid></search><sort><creationdate>20220401</creationdate><title>Highly‐Exposed Single‐Interlayered Cu Edges Enable High‐Rate CO2‐to‐CH4 Electrosynthesis</title><author>Peng, Chen ; Xu, Zikai ; Luo, Gan ; Yan, Shuai ; Zhang, Junbo ; Li, Si ; Chen, Yangsheng ; Chang, Lo Yueh ; Wang, Zhiqiang ; Sham, Tsun‐Kong ; Zheng, Gengfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-54954a356e1a96f8b50276d91d333cd94964ccaa9b6e6ae16f52655ddbde1d183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Catalytic activity</topic><topic>CH 4</topic><topic>CO 2 reduction reaction</topic><topic>CuGaO 2 nanosheets</topic><topic>Current density</topic><topic>Cu–Cu distance</topic><topic>Density functional theory</topic><topic>Electrolysis</topic><topic>Electrowinning</topic><topic>Exposure</topic><topic>Methane</topic><topic>Nanosheets</topic><topic>Selectivity</topic><topic>single‐interlayered copper edge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Chen</creatorcontrib><creatorcontrib>Xu, Zikai</creatorcontrib><creatorcontrib>Luo, Gan</creatorcontrib><creatorcontrib>Yan, Shuai</creatorcontrib><creatorcontrib>Zhang, Junbo</creatorcontrib><creatorcontrib>Li, Si</creatorcontrib><creatorcontrib>Chen, Yangsheng</creatorcontrib><creatorcontrib>Chang, Lo Yueh</creatorcontrib><creatorcontrib>Wang, Zhiqiang</creatorcontrib><creatorcontrib>Sham, Tsun‐Kong</creatorcontrib><creatorcontrib>Zheng, Gengfeng</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Chen</au><au>Xu, Zikai</au><au>Luo, Gan</au><au>Yan, Shuai</au><au>Zhang, Junbo</au><au>Li, Si</au><au>Chen, Yangsheng</au><au>Chang, Lo Yueh</au><au>Wang, Zhiqiang</au><au>Sham, Tsun‐Kong</au><au>Zheng, Gengfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly‐Exposed Single‐Interlayered Cu Edges Enable High‐Rate CO2‐to‐CH4 Electrosynthesis</atitle><jtitle>Advanced energy materials</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>12</volume><issue>15</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The electrochemical CO2 reduction to CH4 is a promising approach for producing highly specific combustion fuel but has relatively poor selectivity and activity at high‐current‐density electrolysis. In this work, ultrathin CuGaO2 nanosheets with highly exposed single‐interlayered Cu edges are synthesized via an induced anisotropic growth strategy. Density functional theory calculations indicate that the exposed single‐interlayered Cu(I) edges on the (001) surface of CuGaO2 present a high‐density of single‐atomic Cu sites, which feature excellent CO2 electroreduction catalytic activity toward CH4. The CuGaO2 nanosheet catalysts exhibit efficient and stable CO2‐to‐CH4 electroreduction with Faradaic efficiency (FECH4) of 71.7% at a high current density of –1 A cm−2, corresponding to a superior CH4 partial current density of 717 ± 33 mA cm−2. This work suggests an attractive design strategy for tuning both the crystal facets and Cu–Cu distance to promote the CH4 electrosynthesis at high‐current‐density CO2 reduction. The electrochemical CO2‐to‐CH4 conversion has relatively poor selectivity at high‐current‐density electrolysis. The ultrathin CuGaO2 nanosheet catalyst features high‐density, single‐interlayered Cu edges and larger Cu–Cu distances, exhibiting an exceptional jCH4 of 717 ± 33 mA cm−2 with FECH4 of 71.7%, and an outstanding stability at a high current density of –1 A cm−2 in flow cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202200195</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1803-6955</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-04, Vol.12 (15), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2652761471
source Access via Wiley Online Library
subjects Carbon dioxide
Catalytic activity
CH 4
CO 2 reduction reaction
CuGaO 2 nanosheets
Current density
Cu–Cu distance
Density functional theory
Electrolysis
Electrowinning
Exposure
Methane
Nanosheets
Selectivity
single‐interlayered copper edge
title Highly‐Exposed Single‐Interlayered Cu Edges Enable High‐Rate CO2‐to‐CH4 Electrosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%E2%80%90Exposed%20Single%E2%80%90Interlayered%20Cu%20Edges%20Enable%20High%E2%80%90Rate%20CO2%E2%80%90to%E2%80%90CH4%20Electrosynthesis&rft.jtitle=Advanced%20energy%20materials&rft.au=Peng,%20Chen&rft.date=2022-04-01&rft.volume=12&rft.issue=15&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202200195&rft_dat=%3Cproquest_wiley%3E2652761471%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652761471&rft_id=info:pmid/&rfr_iscdi=true