Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net

Lakes and reservoirs (LaR) are important parts of water resources and their rapid and accurate monitoring is an essential guarantee for maintaining ecological health and social development. The existing waterbody extraction methods are mostly targeted at local water bodies, with little attention on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Ge, Chuangjie, Xie, Wenjun, Meng, Lingkui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Ge, Chuangjie
Xie, Wenjun
Meng, Lingkui
description Lakes and reservoirs (LaR) are important parts of water resources and their rapid and accurate monitoring is an essential guarantee for maintaining ecological health and social development. The existing waterbody extraction methods are mostly targeted at local water bodies, with little attention on the national scale. In this letter, an improved U-Net method is proposed for LaR extraction from GF-1 satellite imagery. First, 21 scenes of GF-1 images are evenly selected across China, and the training set and validation set are produced by image processing, cropping, and augmentation. Second, a deep learning network is constructed by modifying the U-Net, deepening the network and introducing multiple skip connections, which is suitable for extracting LaR China-wide. Experiments on the GF-1 imagery demonstrate that the superiority of the improved U-Net when compared with other deep learning methods (U-Net, UNet++, FastFCN, DeepLabv3+) and traditional methods [the normalized difference water index (NDWI), maximum likelihood method (MLM)]. In addition, 20 LaR are selected for further evaluation of the model, and all of them achieve good extraction results, showing excellent generalization of the model.
doi_str_mv 10.1109/LGRS.2022.3155653
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2652706030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9724262</ieee_id><sourcerecordid>2652706030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b36f5b4d17be0d2d93b71dcbf43b798a77ef37ddc17b520ca058a831129ed3033</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZpLmVsc1AcbA4EL0LanM7OtZ1JN9y_N2Xi1Xkvnvc98CB0T8mIUqKestlyNWKEsRGnQiSCX6BBCGlEhKSXfY5FJFT6fo1uvN8SwuI0lQP0MfnpnCm6qtngzHyBx6axeAke3LGtnMdT19Z4No0oXpkOdruqAzyvzQbcCS-O4PD4s2oMXvt-YV7vXXsEi9fRK3S36Ko0Ow93f3eI1tPJ2_glyhaz-fg5iwqmeBflPClFHlsqcyCWWcVzSW2Rl3EIKjVSQsmltUUABCOFISI1KaeUKbCccD5Ej-fd8Pz7AL7T2_bgmvBSs0QwSRISsCGiZ6pwrfcOSr13VW3cSVOie4e6d6h7h_rPYeg8nDsVAPzzSrKYJYz_ApkebHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652706030</pqid></control><display><type>article</type><title>Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net</title><source>IEEE Electronic Library (IEL)</source><creator>Ge, Chuangjie ; Xie, Wenjun ; Meng, Lingkui</creator><creatorcontrib>Ge, Chuangjie ; Xie, Wenjun ; Meng, Lingkui</creatorcontrib><description>Lakes and reservoirs (LaR) are important parts of water resources and their rapid and accurate monitoring is an essential guarantee for maintaining ecological health and social development. The existing waterbody extraction methods are mostly targeted at local water bodies, with little attention on the national scale. In this letter, an improved U-Net method is proposed for LaR extraction from GF-1 satellite imagery. First, 21 scenes of GF-1 images are evenly selected across China, and the training set and validation set are produced by image processing, cropping, and augmentation. Second, a deep learning network is constructed by modifying the U-Net, deepening the network and introducing multiple skip connections, which is suitable for extracting LaR China-wide. Experiments on the GF-1 imagery demonstrate that the superiority of the improved U-Net when compared with other deep learning methods (U-Net, UNet++, FastFCN, DeepLabv3+) and traditional methods [the normalized difference water index (NDWI), maximum likelihood method (MLM)]. In addition, 20 LaR are selected for further evaluation of the model, and all of them achieve good extraction results, showing excellent generalization of the model.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3155653</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Convolution ; Deep learning ; Feature extraction ; GF-1 ; Image processing ; Imagery ; Indexes ; Lakes ; lakes and reservoirs (LaR) ; LaR dataset ; Maximum likelihood method ; Methods ; Reservoirs ; Satellite imagery ; Spaceborne remote sensing ; U-Net ; water extraction ; Water resources</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b36f5b4d17be0d2d93b71dcbf43b798a77ef37ddc17b520ca058a831129ed3033</citedby><cites>FETCH-LOGICAL-c293t-b36f5b4d17be0d2d93b71dcbf43b798a77ef37ddc17b520ca058a831129ed3033</cites><orcidid>0000-0002-4097-3080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9724262$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9724262$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ge, Chuangjie</creatorcontrib><creatorcontrib>Xie, Wenjun</creatorcontrib><creatorcontrib>Meng, Lingkui</creatorcontrib><title>Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Lakes and reservoirs (LaR) are important parts of water resources and their rapid and accurate monitoring is an essential guarantee for maintaining ecological health and social development. The existing waterbody extraction methods are mostly targeted at local water bodies, with little attention on the national scale. In this letter, an improved U-Net method is proposed for LaR extraction from GF-1 satellite imagery. First, 21 scenes of GF-1 images are evenly selected across China, and the training set and validation set are produced by image processing, cropping, and augmentation. Second, a deep learning network is constructed by modifying the U-Net, deepening the network and introducing multiple skip connections, which is suitable for extracting LaR China-wide. Experiments on the GF-1 imagery demonstrate that the superiority of the improved U-Net when compared with other deep learning methods (U-Net, UNet++, FastFCN, DeepLabv3+) and traditional methods [the normalized difference water index (NDWI), maximum likelihood method (MLM)]. In addition, 20 LaR are selected for further evaluation of the model, and all of them achieve good extraction results, showing excellent generalization of the model.</description><subject>Adaptation models</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>GF-1</subject><subject>Image processing</subject><subject>Imagery</subject><subject>Indexes</subject><subject>Lakes</subject><subject>lakes and reservoirs (LaR)</subject><subject>LaR dataset</subject><subject>Maximum likelihood method</subject><subject>Methods</subject><subject>Reservoirs</subject><subject>Satellite imagery</subject><subject>Spaceborne remote sensing</subject><subject>U-Net</subject><subject>water extraction</subject><subject>Water resources</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZpLmVsc1AcbA4EL0LanM7OtZ1JN9y_N2Xi1Xkvnvc98CB0T8mIUqKestlyNWKEsRGnQiSCX6BBCGlEhKSXfY5FJFT6fo1uvN8SwuI0lQP0MfnpnCm6qtngzHyBx6axeAke3LGtnMdT19Z4No0oXpkOdruqAzyvzQbcCS-O4PD4s2oMXvt-YV7vXXsEi9fRK3S36Ko0Ow93f3eI1tPJ2_glyhaz-fg5iwqmeBflPClFHlsqcyCWWcVzSW2Rl3EIKjVSQsmltUUABCOFISI1KaeUKbCccD5Ej-fd8Pz7AL7T2_bgmvBSs0QwSRISsCGiZ6pwrfcOSr13VW3cSVOie4e6d6h7h_rPYeg8nDsVAPzzSrKYJYz_ApkebHk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ge, Chuangjie</creator><creator>Xie, Wenjun</creator><creator>Meng, Lingkui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4097-3080</orcidid></search><sort><creationdate>2022</creationdate><title>Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net</title><author>Ge, Chuangjie ; Xie, Wenjun ; Meng, Lingkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b36f5b4d17be0d2d93b71dcbf43b798a77ef37ddc17b520ca058a831129ed3033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>GF-1</topic><topic>Image processing</topic><topic>Imagery</topic><topic>Indexes</topic><topic>Lakes</topic><topic>lakes and reservoirs (LaR)</topic><topic>LaR dataset</topic><topic>Maximum likelihood method</topic><topic>Methods</topic><topic>Reservoirs</topic><topic>Satellite imagery</topic><topic>Spaceborne remote sensing</topic><topic>U-Net</topic><topic>water extraction</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Chuangjie</creatorcontrib><creatorcontrib>Xie, Wenjun</creatorcontrib><creatorcontrib>Meng, Lingkui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ge, Chuangjie</au><au>Xie, Wenjun</au><au>Meng, Lingkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Lakes and reservoirs (LaR) are important parts of water resources and their rapid and accurate monitoring is an essential guarantee for maintaining ecological health and social development. The existing waterbody extraction methods are mostly targeted at local water bodies, with little attention on the national scale. In this letter, an improved U-Net method is proposed for LaR extraction from GF-1 satellite imagery. First, 21 scenes of GF-1 images are evenly selected across China, and the training set and validation set are produced by image processing, cropping, and augmentation. Second, a deep learning network is constructed by modifying the U-Net, deepening the network and introducing multiple skip connections, which is suitable for extracting LaR China-wide. Experiments on the GF-1 imagery demonstrate that the superiority of the improved U-Net when compared with other deep learning methods (U-Net, UNet++, FastFCN, DeepLabv3+) and traditional methods [the normalized difference water index (NDWI), maximum likelihood method (MLM)]. In addition, 20 LaR are selected for further evaluation of the model, and all of them achieve good extraction results, showing excellent generalization of the model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3155653</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4097-3080</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2652706030
source IEEE Electronic Library (IEL)
subjects Adaptation models
Convolution
Deep learning
Feature extraction
GF-1
Image processing
Imagery
Indexes
Lakes
lakes and reservoirs (LaR)
LaR dataset
Maximum likelihood method
Methods
Reservoirs
Satellite imagery
Spaceborne remote sensing
U-Net
water extraction
Water resources
title Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Lakes%20and%20Reservoirs%20From%20GF-1%20Satellite%20Imagery%20Over%20China%20Using%20Improved%20U-Net&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ge,%20Chuangjie&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3155653&rft_dat=%3Cproquest_RIE%3E2652706030%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652706030&rft_id=info:pmid/&rft_ieee_id=9724262&rfr_iscdi=true