Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net
Lakes and reservoirs (LaR) are important parts of water resources and their rapid and accurate monitoring is an essential guarantee for maintaining ecological health and social development. The existing waterbody extraction methods are mostly targeted at local water bodies, with little attention on...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Ge, Chuangjie Xie, Wenjun Meng, Lingkui |
description | Lakes and reservoirs (LaR) are important parts of water resources and their rapid and accurate monitoring is an essential guarantee for maintaining ecological health and social development. The existing waterbody extraction methods are mostly targeted at local water bodies, with little attention on the national scale. In this letter, an improved U-Net method is proposed for LaR extraction from GF-1 satellite imagery. First, 21 scenes of GF-1 images are evenly selected across China, and the training set and validation set are produced by image processing, cropping, and augmentation. Second, a deep learning network is constructed by modifying the U-Net, deepening the network and introducing multiple skip connections, which is suitable for extracting LaR China-wide. Experiments on the GF-1 imagery demonstrate that the superiority of the improved U-Net when compared with other deep learning methods (U-Net, UNet++, FastFCN, DeepLabv3+) and traditional methods [the normalized difference water index (NDWI), maximum likelihood method (MLM)]. In addition, 20 LaR are selected for further evaluation of the model, and all of them achieve good extraction results, showing excellent generalization of the model. |
doi_str_mv | 10.1109/LGRS.2022.3155653 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2652706030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9724262</ieee_id><sourcerecordid>2652706030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b36f5b4d17be0d2d93b71dcbf43b798a77ef37ddc17b520ca058a831129ed3033</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZpLmVsc1AcbA4EL0LanM7OtZ1JN9y_N2Xi1Xkvnvc98CB0T8mIUqKestlyNWKEsRGnQiSCX6BBCGlEhKSXfY5FJFT6fo1uvN8SwuI0lQP0MfnpnCm6qtngzHyBx6axeAke3LGtnMdT19Z4No0oXpkOdruqAzyvzQbcCS-O4PD4s2oMXvt-YV7vXXsEi9fRK3S36Ko0Ow93f3eI1tPJ2_glyhaz-fg5iwqmeBflPClFHlsqcyCWWcVzSW2Rl3EIKjVSQsmltUUABCOFISI1KaeUKbCccD5Ej-fd8Pz7AL7T2_bgmvBSs0QwSRISsCGiZ6pwrfcOSr13VW3cSVOie4e6d6h7h_rPYeg8nDsVAPzzSrKYJYz_ApkebHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652706030</pqid></control><display><type>article</type><title>Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net</title><source>IEEE Electronic Library (IEL)</source><creator>Ge, Chuangjie ; Xie, Wenjun ; Meng, Lingkui</creator><creatorcontrib>Ge, Chuangjie ; Xie, Wenjun ; Meng, Lingkui</creatorcontrib><description>Lakes and reservoirs (LaR) are important parts of water resources and their rapid and accurate monitoring is an essential guarantee for maintaining ecological health and social development. The existing waterbody extraction methods are mostly targeted at local water bodies, with little attention on the national scale. In this letter, an improved U-Net method is proposed for LaR extraction from GF-1 satellite imagery. First, 21 scenes of GF-1 images are evenly selected across China, and the training set and validation set are produced by image processing, cropping, and augmentation. Second, a deep learning network is constructed by modifying the U-Net, deepening the network and introducing multiple skip connections, which is suitable for extracting LaR China-wide. Experiments on the GF-1 imagery demonstrate that the superiority of the improved U-Net when compared with other deep learning methods (U-Net, UNet++, FastFCN, DeepLabv3+) and traditional methods [the normalized difference water index (NDWI), maximum likelihood method (MLM)]. In addition, 20 LaR are selected for further evaluation of the model, and all of them achieve good extraction results, showing excellent generalization of the model.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3155653</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Convolution ; Deep learning ; Feature extraction ; GF-1 ; Image processing ; Imagery ; Indexes ; Lakes ; lakes and reservoirs (LaR) ; LaR dataset ; Maximum likelihood method ; Methods ; Reservoirs ; Satellite imagery ; Spaceborne remote sensing ; U-Net ; water extraction ; Water resources</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b36f5b4d17be0d2d93b71dcbf43b798a77ef37ddc17b520ca058a831129ed3033</citedby><cites>FETCH-LOGICAL-c293t-b36f5b4d17be0d2d93b71dcbf43b798a77ef37ddc17b520ca058a831129ed3033</cites><orcidid>0000-0002-4097-3080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9724262$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9724262$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ge, Chuangjie</creatorcontrib><creatorcontrib>Xie, Wenjun</creatorcontrib><creatorcontrib>Meng, Lingkui</creatorcontrib><title>Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Lakes and reservoirs (LaR) are important parts of water resources and their rapid and accurate monitoring is an essential guarantee for maintaining ecological health and social development. The existing waterbody extraction methods are mostly targeted at local water bodies, with little attention on the national scale. In this letter, an improved U-Net method is proposed for LaR extraction from GF-1 satellite imagery. First, 21 scenes of GF-1 images are evenly selected across China, and the training set and validation set are produced by image processing, cropping, and augmentation. Second, a deep learning network is constructed by modifying the U-Net, deepening the network and introducing multiple skip connections, which is suitable for extracting LaR China-wide. Experiments on the GF-1 imagery demonstrate that the superiority of the improved U-Net when compared with other deep learning methods (U-Net, UNet++, FastFCN, DeepLabv3+) and traditional methods [the normalized difference water index (NDWI), maximum likelihood method (MLM)]. In addition, 20 LaR are selected for further evaluation of the model, and all of them achieve good extraction results, showing excellent generalization of the model.</description><subject>Adaptation models</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>GF-1</subject><subject>Image processing</subject><subject>Imagery</subject><subject>Indexes</subject><subject>Lakes</subject><subject>lakes and reservoirs (LaR)</subject><subject>LaR dataset</subject><subject>Maximum likelihood method</subject><subject>Methods</subject><subject>Reservoirs</subject><subject>Satellite imagery</subject><subject>Spaceborne remote sensing</subject><subject>U-Net</subject><subject>water extraction</subject><subject>Water resources</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZpLmVsc1AcbA4EL0LanM7OtZ1JN9y_N2Xi1Xkvnvc98CB0T8mIUqKestlyNWKEsRGnQiSCX6BBCGlEhKSXfY5FJFT6fo1uvN8SwuI0lQP0MfnpnCm6qtngzHyBx6axeAke3LGtnMdT19Z4No0oXpkOdruqAzyvzQbcCS-O4PD4s2oMXvt-YV7vXXsEi9fRK3S36Ko0Ow93f3eI1tPJ2_glyhaz-fg5iwqmeBflPClFHlsqcyCWWcVzSW2Rl3EIKjVSQsmltUUABCOFISI1KaeUKbCccD5Ej-fd8Pz7AL7T2_bgmvBSs0QwSRISsCGiZ6pwrfcOSr13VW3cSVOie4e6d6h7h_rPYeg8nDsVAPzzSrKYJYz_ApkebHk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ge, Chuangjie</creator><creator>Xie, Wenjun</creator><creator>Meng, Lingkui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4097-3080</orcidid></search><sort><creationdate>2022</creationdate><title>Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net</title><author>Ge, Chuangjie ; Xie, Wenjun ; Meng, Lingkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b36f5b4d17be0d2d93b71dcbf43b798a77ef37ddc17b520ca058a831129ed3033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>GF-1</topic><topic>Image processing</topic><topic>Imagery</topic><topic>Indexes</topic><topic>Lakes</topic><topic>lakes and reservoirs (LaR)</topic><topic>LaR dataset</topic><topic>Maximum likelihood method</topic><topic>Methods</topic><topic>Reservoirs</topic><topic>Satellite imagery</topic><topic>Spaceborne remote sensing</topic><topic>U-Net</topic><topic>water extraction</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Chuangjie</creatorcontrib><creatorcontrib>Xie, Wenjun</creatorcontrib><creatorcontrib>Meng, Lingkui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ge, Chuangjie</au><au>Xie, Wenjun</au><au>Meng, Lingkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Lakes and reservoirs (LaR) are important parts of water resources and their rapid and accurate monitoring is an essential guarantee for maintaining ecological health and social development. The existing waterbody extraction methods are mostly targeted at local water bodies, with little attention on the national scale. In this letter, an improved U-Net method is proposed for LaR extraction from GF-1 satellite imagery. First, 21 scenes of GF-1 images are evenly selected across China, and the training set and validation set are produced by image processing, cropping, and augmentation. Second, a deep learning network is constructed by modifying the U-Net, deepening the network and introducing multiple skip connections, which is suitable for extracting LaR China-wide. Experiments on the GF-1 imagery demonstrate that the superiority of the improved U-Net when compared with other deep learning methods (U-Net, UNet++, FastFCN, DeepLabv3+) and traditional methods [the normalized difference water index (NDWI), maximum likelihood method (MLM)]. In addition, 20 LaR are selected for further evaluation of the model, and all of them achieve good extraction results, showing excellent generalization of the model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3155653</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4097-3080</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2652706030 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Convolution Deep learning Feature extraction GF-1 Image processing Imagery Indexes Lakes lakes and reservoirs (LaR) LaR dataset Maximum likelihood method Methods Reservoirs Satellite imagery Spaceborne remote sensing U-Net water extraction Water resources |
title | Extracting Lakes and Reservoirs From GF-1 Satellite Imagery Over China Using Improved U-Net |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Lakes%20and%20Reservoirs%20From%20GF-1%20Satellite%20Imagery%20Over%20China%20Using%20Improved%20U-Net&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ge,%20Chuangjie&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3155653&rft_dat=%3Cproquest_RIE%3E2652706030%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652706030&rft_id=info:pmid/&rft_ieee_id=9724262&rfr_iscdi=true |