Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators
This paper proposes a composite controller (CC) to improve the accuracy of trajectory tracking and suppress the vibration of two-link underwater flexible manipulators. A dynamic model of the flexible manipulators considering hydrodynamic force is established by combining the Lagrange equation and Mo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.40181-40196 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40196 |
---|---|
container_issue | |
container_start_page | 40181 |
container_title | IEEE access |
container_volume | 10 |
creator | Huang, Hui Tang, Guoyuan Chen, Hongxuan Han, Lijun Xie, De |
description | This paper proposes a composite controller (CC) to improve the accuracy of trajectory tracking and suppress the vibration of two-link underwater flexible manipulators. A dynamic model of the flexible manipulators considering hydrodynamic force is established by combining the Lagrange equation and Morison formula. Then, the dynamic model is divided into a flexible dynamic subsystem and rigid dynamic subsystem, and a decomposed dynamic control strategy is presented for the two subsystems. In particular, an adaptive fuzzy sliding mode control scheme (AFSMC) with good robustness to compensate for uncertain factors is designed to track the joint trajectory and suppress vibration. Next, the trajectory tracking control of two-link underwater flexible manipulators is simulated to investigate the performance of the framework. The results show that the hydrodynamic force and flexible deformation markedly affect the input torque of the joint, and the traditional sliding mode controller (SMC) is superior to proportional integral derivative (PID) control in managing hydrodynamic force disturbance and inferior in suppressing flexible vibration. The proposed composite controller based on adaptive fuzzy sliding mode control CC(AFSMC) is more effective in restraining the vibration of flexible manipulators and resisting hydrodynamic force disturbance than PID and CC(SMC). |
doi_str_mv | 10.1109/ACCESS.2022.3164706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2652701041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9749078</ieee_id><doaj_id>oai_doaj_org_article_f3224281afaa4d29aa8c8601bb74c188</doaj_id><sourcerecordid>2652701041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b88c25b2210adcd68075a533a21d6cab35a02bbecda6202d8dd3bf51ca8a69073</originalsourceid><addsrcrecordid>eNpNUU1PwkAQbYwmEuQXcGniubgf7XZ7JAhqAvEAGG-b2Y-SxdKtuyXov7dYYpzLTF7eezOTF0VjjCYYo-JhOpvN1-sJQYRMKGZpjthVNCCYFQnNKLv-N99GoxD2qCveQVk-iN4fv2s4WBWvnDaVrXcx1Dp-s9JDa10dr49N400I57l0Pt6cXLK09Ue8rbXxJ2iNjxeV-bKyMvEKatscK2idD3fRTQlVMKNLH0bbxXwze06Wr08vs-kyUZTyNpGcK5JJQjACrTTjKM8goxQI1kyBpBkgIqVRGlj3oeZaU1lmWAEHVqCcDqOX3lc72IvG2wP4b-HAil_A-Z0A31pVGVFSQlLCMZQAqSYFAFecISxlnirMeed133s13n0eTWjF3h193Z0vCMtIjjBKcceiPUt5F4I35d9WjMQ5EdEnIs6JiEsinWrcq6wx5k9R5Gn3BKc_IRmHqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652701041</pqid></control><display><type>article</type><title>Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huang, Hui ; Tang, Guoyuan ; Chen, Hongxuan ; Han, Lijun ; Xie, De</creator><creatorcontrib>Huang, Hui ; Tang, Guoyuan ; Chen, Hongxuan ; Han, Lijun ; Xie, De</creatorcontrib><description>This paper proposes a composite controller (CC) to improve the accuracy of trajectory tracking and suppress the vibration of two-link underwater flexible manipulators. A dynamic model of the flexible manipulators considering hydrodynamic force is established by combining the Lagrange equation and Morison formula. Then, the dynamic model is divided into a flexible dynamic subsystem and rigid dynamic subsystem, and a decomposed dynamic control strategy is presented for the two subsystems. In particular, an adaptive fuzzy sliding mode control scheme (AFSMC) with good robustness to compensate for uncertain factors is designed to track the joint trajectory and suppress vibration. Next, the trajectory tracking control of two-link underwater flexible manipulators is simulated to investigate the performance of the framework. The results show that the hydrodynamic force and flexible deformation markedly affect the input torque of the joint, and the traditional sliding mode controller (SMC) is superior to proportional integral derivative (PID) control in managing hydrodynamic force disturbance and inferior in suppressing flexible vibration. The proposed composite controller based on adaptive fuzzy sliding mode control CC(AFSMC) is more effective in restraining the vibration of flexible manipulators and resisting hydrodynamic force disturbance than PID and CC(SMC).</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3164706</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive control ; composite controller ; Controllers ; Dynamic control ; Dynamic models ; Euler-Lagrange equation ; Flexible manipulators ; Force ; Fuzzy control ; hydrodynamic force ; Hydrodynamics ; Manipulator dynamics ; Mathematical models ; Proportional integral derivative ; Robot arms ; Robustness (mathematics) ; Sliding mode control ; Subsystems ; Tracking control ; Trajectory control ; Underwater ; Vibration control ; vibration suppression ; Vibrations</subject><ispartof>IEEE access, 2022, Vol.10, p.40181-40196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b88c25b2210adcd68075a533a21d6cab35a02bbecda6202d8dd3bf51ca8a69073</citedby><cites>FETCH-LOGICAL-c338t-b88c25b2210adcd68075a533a21d6cab35a02bbecda6202d8dd3bf51ca8a69073</cites><orcidid>0000-0003-1410-3011 ; 0000-0001-8166-3997 ; 0000-0002-5441-6066 ; 0000-0001-9468-8720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9749078$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Tang, Guoyuan</creatorcontrib><creatorcontrib>Chen, Hongxuan</creatorcontrib><creatorcontrib>Han, Lijun</creatorcontrib><creatorcontrib>Xie, De</creatorcontrib><title>Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a composite controller (CC) to improve the accuracy of trajectory tracking and suppress the vibration of two-link underwater flexible manipulators. A dynamic model of the flexible manipulators considering hydrodynamic force is established by combining the Lagrange equation and Morison formula. Then, the dynamic model is divided into a flexible dynamic subsystem and rigid dynamic subsystem, and a decomposed dynamic control strategy is presented for the two subsystems. In particular, an adaptive fuzzy sliding mode control scheme (AFSMC) with good robustness to compensate for uncertain factors is designed to track the joint trajectory and suppress vibration. Next, the trajectory tracking control of two-link underwater flexible manipulators is simulated to investigate the performance of the framework. The results show that the hydrodynamic force and flexible deformation markedly affect the input torque of the joint, and the traditional sliding mode controller (SMC) is superior to proportional integral derivative (PID) control in managing hydrodynamic force disturbance and inferior in suppressing flexible vibration. The proposed composite controller based on adaptive fuzzy sliding mode control CC(AFSMC) is more effective in restraining the vibration of flexible manipulators and resisting hydrodynamic force disturbance than PID and CC(SMC).</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>composite controller</subject><subject>Controllers</subject><subject>Dynamic control</subject><subject>Dynamic models</subject><subject>Euler-Lagrange equation</subject><subject>Flexible manipulators</subject><subject>Force</subject><subject>Fuzzy control</subject><subject>hydrodynamic force</subject><subject>Hydrodynamics</subject><subject>Manipulator dynamics</subject><subject>Mathematical models</subject><subject>Proportional integral derivative</subject><subject>Robot arms</subject><subject>Robustness (mathematics)</subject><subject>Sliding mode control</subject><subject>Subsystems</subject><subject>Tracking control</subject><subject>Trajectory control</subject><subject>Underwater</subject><subject>Vibration control</subject><subject>vibration suppression</subject><subject>Vibrations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQbYwmEuQXcGniubgf7XZ7JAhqAvEAGG-b2Y-SxdKtuyXov7dYYpzLTF7eezOTF0VjjCYYo-JhOpvN1-sJQYRMKGZpjthVNCCYFQnNKLv-N99GoxD2qCveQVk-iN4fv2s4WBWvnDaVrXcx1Dp-s9JDa10dr49N400I57l0Pt6cXLK09Ue8rbXxJ2iNjxeV-bKyMvEKatscK2idD3fRTQlVMKNLH0bbxXwze06Wr08vs-kyUZTyNpGcK5JJQjACrTTjKM8goxQI1kyBpBkgIqVRGlj3oeZaU1lmWAEHVqCcDqOX3lc72IvG2wP4b-HAil_A-Z0A31pVGVFSQlLCMZQAqSYFAFecISxlnirMeed133s13n0eTWjF3h193Z0vCMtIjjBKcceiPUt5F4I35d9WjMQ5EdEnIs6JiEsinWrcq6wx5k9R5Gn3BKc_IRmHqg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Hui</creator><creator>Tang, Guoyuan</creator><creator>Chen, Hongxuan</creator><creator>Han, Lijun</creator><creator>Xie, De</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1410-3011</orcidid><orcidid>https://orcid.org/0000-0001-8166-3997</orcidid><orcidid>https://orcid.org/0000-0002-5441-6066</orcidid><orcidid>https://orcid.org/0000-0001-9468-8720</orcidid></search><sort><creationdate>2022</creationdate><title>Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators</title><author>Huang, Hui ; Tang, Guoyuan ; Chen, Hongxuan ; Han, Lijun ; Xie, De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b88c25b2210adcd68075a533a21d6cab35a02bbecda6202d8dd3bf51ca8a69073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>composite controller</topic><topic>Controllers</topic><topic>Dynamic control</topic><topic>Dynamic models</topic><topic>Euler-Lagrange equation</topic><topic>Flexible manipulators</topic><topic>Force</topic><topic>Fuzzy control</topic><topic>hydrodynamic force</topic><topic>Hydrodynamics</topic><topic>Manipulator dynamics</topic><topic>Mathematical models</topic><topic>Proportional integral derivative</topic><topic>Robot arms</topic><topic>Robustness (mathematics)</topic><topic>Sliding mode control</topic><topic>Subsystems</topic><topic>Tracking control</topic><topic>Trajectory control</topic><topic>Underwater</topic><topic>Vibration control</topic><topic>vibration suppression</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Tang, Guoyuan</creatorcontrib><creatorcontrib>Chen, Hongxuan</creatorcontrib><creatorcontrib>Han, Lijun</creatorcontrib><creatorcontrib>Xie, De</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hui</au><au>Tang, Guoyuan</au><au>Chen, Hongxuan</au><au>Han, Lijun</au><au>Xie, De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>40181</spage><epage>40196</epage><pages>40181-40196</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a composite controller (CC) to improve the accuracy of trajectory tracking and suppress the vibration of two-link underwater flexible manipulators. A dynamic model of the flexible manipulators considering hydrodynamic force is established by combining the Lagrange equation and Morison formula. Then, the dynamic model is divided into a flexible dynamic subsystem and rigid dynamic subsystem, and a decomposed dynamic control strategy is presented for the two subsystems. In particular, an adaptive fuzzy sliding mode control scheme (AFSMC) with good robustness to compensate for uncertain factors is designed to track the joint trajectory and suppress vibration. Next, the trajectory tracking control of two-link underwater flexible manipulators is simulated to investigate the performance of the framework. The results show that the hydrodynamic force and flexible deformation markedly affect the input torque of the joint, and the traditional sliding mode controller (SMC) is superior to proportional integral derivative (PID) control in managing hydrodynamic force disturbance and inferior in suppressing flexible vibration. The proposed composite controller based on adaptive fuzzy sliding mode control CC(AFSMC) is more effective in restraining the vibration of flexible manipulators and resisting hydrodynamic force disturbance than PID and CC(SMC).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3164706</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1410-3011</orcidid><orcidid>https://orcid.org/0000-0001-8166-3997</orcidid><orcidid>https://orcid.org/0000-0002-5441-6066</orcidid><orcidid>https://orcid.org/0000-0001-9468-8720</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.40181-40196 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2652701041 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptation models Adaptive control composite controller Controllers Dynamic control Dynamic models Euler-Lagrange equation Flexible manipulators Force Fuzzy control hydrodynamic force Hydrodynamics Manipulator dynamics Mathematical models Proportional integral derivative Robot arms Robustness (mathematics) Sliding mode control Subsystems Tracking control Trajectory control Underwater Vibration control vibration suppression Vibrations |
title | Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Modeling%20and%20Vibration%20Suppression%20for%20Two-Link%20Underwater%20Flexible%20Manipulators&rft.jtitle=IEEE%20access&rft.au=Huang,%20Hui&rft.date=2022&rft.volume=10&rft.spage=40181&rft.epage=40196&rft.pages=40181-40196&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3164706&rft_dat=%3Cproquest_ieee_%3E2652701041%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652701041&rft_id=info:pmid/&rft_ieee_id=9749078&rft_doaj_id=oai_doaj_org_article_f3224281afaa4d29aa8c8601bb74c188&rfr_iscdi=true |