Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators

This paper proposes a composite controller (CC) to improve the accuracy of trajectory tracking and suppress the vibration of two-link underwater flexible manipulators. A dynamic model of the flexible manipulators considering hydrodynamic force is established by combining the Lagrange equation and Mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.40181-40196
Hauptverfasser: Huang, Hui, Tang, Guoyuan, Chen, Hongxuan, Han, Lijun, Xie, De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40196
container_issue
container_start_page 40181
container_title IEEE access
container_volume 10
creator Huang, Hui
Tang, Guoyuan
Chen, Hongxuan
Han, Lijun
Xie, De
description This paper proposes a composite controller (CC) to improve the accuracy of trajectory tracking and suppress the vibration of two-link underwater flexible manipulators. A dynamic model of the flexible manipulators considering hydrodynamic force is established by combining the Lagrange equation and Morison formula. Then, the dynamic model is divided into a flexible dynamic subsystem and rigid dynamic subsystem, and a decomposed dynamic control strategy is presented for the two subsystems. In particular, an adaptive fuzzy sliding mode control scheme (AFSMC) with good robustness to compensate for uncertain factors is designed to track the joint trajectory and suppress vibration. Next, the trajectory tracking control of two-link underwater flexible manipulators is simulated to investigate the performance of the framework. The results show that the hydrodynamic force and flexible deformation markedly affect the input torque of the joint, and the traditional sliding mode controller (SMC) is superior to proportional integral derivative (PID) control in managing hydrodynamic force disturbance and inferior in suppressing flexible vibration. The proposed composite controller based on adaptive fuzzy sliding mode control CC(AFSMC) is more effective in restraining the vibration of flexible manipulators and resisting hydrodynamic force disturbance than PID and CC(SMC).
doi_str_mv 10.1109/ACCESS.2022.3164706
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2652701041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9749078</ieee_id><doaj_id>oai_doaj_org_article_f3224281afaa4d29aa8c8601bb74c188</doaj_id><sourcerecordid>2652701041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b88c25b2210adcd68075a533a21d6cab35a02bbecda6202d8dd3bf51ca8a69073</originalsourceid><addsrcrecordid>eNpNUU1PwkAQbYwmEuQXcGniubgf7XZ7JAhqAvEAGG-b2Y-SxdKtuyXov7dYYpzLTF7eezOTF0VjjCYYo-JhOpvN1-sJQYRMKGZpjthVNCCYFQnNKLv-N99GoxD2qCveQVk-iN4fv2s4WBWvnDaVrXcx1Dp-s9JDa10dr49N400I57l0Pt6cXLK09Ue8rbXxJ2iNjxeV-bKyMvEKatscK2idD3fRTQlVMKNLH0bbxXwze06Wr08vs-kyUZTyNpGcK5JJQjACrTTjKM8goxQI1kyBpBkgIqVRGlj3oeZaU1lmWAEHVqCcDqOX3lc72IvG2wP4b-HAil_A-Z0A31pVGVFSQlLCMZQAqSYFAFecISxlnirMeed133s13n0eTWjF3h193Z0vCMtIjjBKcceiPUt5F4I35d9WjMQ5EdEnIs6JiEsinWrcq6wx5k9R5Gn3BKc_IRmHqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652701041</pqid></control><display><type>article</type><title>Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huang, Hui ; Tang, Guoyuan ; Chen, Hongxuan ; Han, Lijun ; Xie, De</creator><creatorcontrib>Huang, Hui ; Tang, Guoyuan ; Chen, Hongxuan ; Han, Lijun ; Xie, De</creatorcontrib><description>This paper proposes a composite controller (CC) to improve the accuracy of trajectory tracking and suppress the vibration of two-link underwater flexible manipulators. A dynamic model of the flexible manipulators considering hydrodynamic force is established by combining the Lagrange equation and Morison formula. Then, the dynamic model is divided into a flexible dynamic subsystem and rigid dynamic subsystem, and a decomposed dynamic control strategy is presented for the two subsystems. In particular, an adaptive fuzzy sliding mode control scheme (AFSMC) with good robustness to compensate for uncertain factors is designed to track the joint trajectory and suppress vibration. Next, the trajectory tracking control of two-link underwater flexible manipulators is simulated to investigate the performance of the framework. The results show that the hydrodynamic force and flexible deformation markedly affect the input torque of the joint, and the traditional sliding mode controller (SMC) is superior to proportional integral derivative (PID) control in managing hydrodynamic force disturbance and inferior in suppressing flexible vibration. The proposed composite controller based on adaptive fuzzy sliding mode control CC(AFSMC) is more effective in restraining the vibration of flexible manipulators and resisting hydrodynamic force disturbance than PID and CC(SMC).</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3164706</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive control ; composite controller ; Controllers ; Dynamic control ; Dynamic models ; Euler-Lagrange equation ; Flexible manipulators ; Force ; Fuzzy control ; hydrodynamic force ; Hydrodynamics ; Manipulator dynamics ; Mathematical models ; Proportional integral derivative ; Robot arms ; Robustness (mathematics) ; Sliding mode control ; Subsystems ; Tracking control ; Trajectory control ; Underwater ; Vibration control ; vibration suppression ; Vibrations</subject><ispartof>IEEE access, 2022, Vol.10, p.40181-40196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b88c25b2210adcd68075a533a21d6cab35a02bbecda6202d8dd3bf51ca8a69073</citedby><cites>FETCH-LOGICAL-c338t-b88c25b2210adcd68075a533a21d6cab35a02bbecda6202d8dd3bf51ca8a69073</cites><orcidid>0000-0003-1410-3011 ; 0000-0001-8166-3997 ; 0000-0002-5441-6066 ; 0000-0001-9468-8720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9749078$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Tang, Guoyuan</creatorcontrib><creatorcontrib>Chen, Hongxuan</creatorcontrib><creatorcontrib>Han, Lijun</creatorcontrib><creatorcontrib>Xie, De</creatorcontrib><title>Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a composite controller (CC) to improve the accuracy of trajectory tracking and suppress the vibration of two-link underwater flexible manipulators. A dynamic model of the flexible manipulators considering hydrodynamic force is established by combining the Lagrange equation and Morison formula. Then, the dynamic model is divided into a flexible dynamic subsystem and rigid dynamic subsystem, and a decomposed dynamic control strategy is presented for the two subsystems. In particular, an adaptive fuzzy sliding mode control scheme (AFSMC) with good robustness to compensate for uncertain factors is designed to track the joint trajectory and suppress vibration. Next, the trajectory tracking control of two-link underwater flexible manipulators is simulated to investigate the performance of the framework. The results show that the hydrodynamic force and flexible deformation markedly affect the input torque of the joint, and the traditional sliding mode controller (SMC) is superior to proportional integral derivative (PID) control in managing hydrodynamic force disturbance and inferior in suppressing flexible vibration. The proposed composite controller based on adaptive fuzzy sliding mode control CC(AFSMC) is more effective in restraining the vibration of flexible manipulators and resisting hydrodynamic force disturbance than PID and CC(SMC).</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>composite controller</subject><subject>Controllers</subject><subject>Dynamic control</subject><subject>Dynamic models</subject><subject>Euler-Lagrange equation</subject><subject>Flexible manipulators</subject><subject>Force</subject><subject>Fuzzy control</subject><subject>hydrodynamic force</subject><subject>Hydrodynamics</subject><subject>Manipulator dynamics</subject><subject>Mathematical models</subject><subject>Proportional integral derivative</subject><subject>Robot arms</subject><subject>Robustness (mathematics)</subject><subject>Sliding mode control</subject><subject>Subsystems</subject><subject>Tracking control</subject><subject>Trajectory control</subject><subject>Underwater</subject><subject>Vibration control</subject><subject>vibration suppression</subject><subject>Vibrations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQbYwmEuQXcGniubgf7XZ7JAhqAvEAGG-b2Y-SxdKtuyXov7dYYpzLTF7eezOTF0VjjCYYo-JhOpvN1-sJQYRMKGZpjthVNCCYFQnNKLv-N99GoxD2qCveQVk-iN4fv2s4WBWvnDaVrXcx1Dp-s9JDa10dr49N400I57l0Pt6cXLK09Ue8rbXxJ2iNjxeV-bKyMvEKatscK2idD3fRTQlVMKNLH0bbxXwze06Wr08vs-kyUZTyNpGcK5JJQjACrTTjKM8goxQI1kyBpBkgIqVRGlj3oeZaU1lmWAEHVqCcDqOX3lc72IvG2wP4b-HAil_A-Z0A31pVGVFSQlLCMZQAqSYFAFecISxlnirMeed133s13n0eTWjF3h193Z0vCMtIjjBKcceiPUt5F4I35d9WjMQ5EdEnIs6JiEsinWrcq6wx5k9R5Gn3BKc_IRmHqg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Hui</creator><creator>Tang, Guoyuan</creator><creator>Chen, Hongxuan</creator><creator>Han, Lijun</creator><creator>Xie, De</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1410-3011</orcidid><orcidid>https://orcid.org/0000-0001-8166-3997</orcidid><orcidid>https://orcid.org/0000-0002-5441-6066</orcidid><orcidid>https://orcid.org/0000-0001-9468-8720</orcidid></search><sort><creationdate>2022</creationdate><title>Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators</title><author>Huang, Hui ; Tang, Guoyuan ; Chen, Hongxuan ; Han, Lijun ; Xie, De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b88c25b2210adcd68075a533a21d6cab35a02bbecda6202d8dd3bf51ca8a69073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>composite controller</topic><topic>Controllers</topic><topic>Dynamic control</topic><topic>Dynamic models</topic><topic>Euler-Lagrange equation</topic><topic>Flexible manipulators</topic><topic>Force</topic><topic>Fuzzy control</topic><topic>hydrodynamic force</topic><topic>Hydrodynamics</topic><topic>Manipulator dynamics</topic><topic>Mathematical models</topic><topic>Proportional integral derivative</topic><topic>Robot arms</topic><topic>Robustness (mathematics)</topic><topic>Sliding mode control</topic><topic>Subsystems</topic><topic>Tracking control</topic><topic>Trajectory control</topic><topic>Underwater</topic><topic>Vibration control</topic><topic>vibration suppression</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Tang, Guoyuan</creatorcontrib><creatorcontrib>Chen, Hongxuan</creatorcontrib><creatorcontrib>Han, Lijun</creatorcontrib><creatorcontrib>Xie, De</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hui</au><au>Tang, Guoyuan</au><au>Chen, Hongxuan</au><au>Han, Lijun</au><au>Xie, De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>40181</spage><epage>40196</epage><pages>40181-40196</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a composite controller (CC) to improve the accuracy of trajectory tracking and suppress the vibration of two-link underwater flexible manipulators. A dynamic model of the flexible manipulators considering hydrodynamic force is established by combining the Lagrange equation and Morison formula. Then, the dynamic model is divided into a flexible dynamic subsystem and rigid dynamic subsystem, and a decomposed dynamic control strategy is presented for the two subsystems. In particular, an adaptive fuzzy sliding mode control scheme (AFSMC) with good robustness to compensate for uncertain factors is designed to track the joint trajectory and suppress vibration. Next, the trajectory tracking control of two-link underwater flexible manipulators is simulated to investigate the performance of the framework. The results show that the hydrodynamic force and flexible deformation markedly affect the input torque of the joint, and the traditional sliding mode controller (SMC) is superior to proportional integral derivative (PID) control in managing hydrodynamic force disturbance and inferior in suppressing flexible vibration. The proposed composite controller based on adaptive fuzzy sliding mode control CC(AFSMC) is more effective in restraining the vibration of flexible manipulators and resisting hydrodynamic force disturbance than PID and CC(SMC).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3164706</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1410-3011</orcidid><orcidid>https://orcid.org/0000-0001-8166-3997</orcidid><orcidid>https://orcid.org/0000-0002-5441-6066</orcidid><orcidid>https://orcid.org/0000-0001-9468-8720</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.40181-40196
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2652701041
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation models
Adaptive control
composite controller
Controllers
Dynamic control
Dynamic models
Euler-Lagrange equation
Flexible manipulators
Force
Fuzzy control
hydrodynamic force
Hydrodynamics
Manipulator dynamics
Mathematical models
Proportional integral derivative
Robot arms
Robustness (mathematics)
Sliding mode control
Subsystems
Tracking control
Trajectory control
Underwater
Vibration control
vibration suppression
Vibrations
title Dynamic Modeling and Vibration Suppression for Two-Link Underwater Flexible Manipulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Modeling%20and%20Vibration%20Suppression%20for%20Two-Link%20Underwater%20Flexible%20Manipulators&rft.jtitle=IEEE%20access&rft.au=Huang,%20Hui&rft.date=2022&rft.volume=10&rft.spage=40181&rft.epage=40196&rft.pages=40181-40196&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3164706&rft_dat=%3Cproquest_ieee_%3E2652701041%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652701041&rft_id=info:pmid/&rft_ieee_id=9749078&rft_doaj_id=oai_doaj_org_article_f3224281afaa4d29aa8c8601bb74c188&rfr_iscdi=true