Local wild mapping class groups and cabled braids
We will define and study some generalisations of pure \(\mathfrak{g}\)-braid groups that occur in the theory of connections on curves, for any complex reductive Lie algebra \(\mathfrak{g}\). They make up local pieces of the wild mapping class groups, which are fundamental groups of (universal) defor...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Douçot, Jean Rembado, Gabriele Tamiozzo, Matteo |
description | We will define and study some generalisations of pure \(\mathfrak{g}\)-braid groups that occur in the theory of connections on curves, for any complex reductive Lie algebra \(\mathfrak{g}\). They make up local pieces of the wild mapping class groups, which are fundamental groups of (universal) deformations of wild Riemann surfaces, underlying the braiding of Stokes data and generalising the usual mapping class groups. We will establish a general product decomposition for the local wild mapping class groups, and in many cases define a fission tree controlling this decomposition. Further in type A we will show one obtains cabled versions of braid groups, related to braid operads. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2652416118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652416118</sourcerecordid><originalsourceid>FETCH-proquest_journals_26524161183</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOxw4F5JLG7uL4uDoXq5NLS0xiTmDr6-DD-D0D9-_EgVqraq2RtyIknmRUqI5YNPoQqhrGMjBe3YWHhTj7CcYHDHDlEKODOQtDNS70UKfaLa8E-s7OR7LX7difz7djpcqpvDMI7-6JeTkv9ShabBWRqlW_3d9AH7vMx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652416118</pqid></control><display><type>article</type><title>Local wild mapping class groups and cabled braids</title><source>Free E- Journals</source><creator>Douçot, Jean ; Rembado, Gabriele ; Tamiozzo, Matteo</creator><creatorcontrib>Douçot, Jean ; Rembado, Gabriele ; Tamiozzo, Matteo</creatorcontrib><description>We will define and study some generalisations of pure \(\mathfrak{g}\)-braid groups that occur in the theory of connections on curves, for any complex reductive Lie algebra \(\mathfrak{g}\). They make up local pieces of the wild mapping class groups, which are fundamental groups of (universal) deformations of wild Riemann surfaces, underlying the braiding of Stokes data and generalising the usual mapping class groups. We will establish a general product decomposition for the local wild mapping class groups, and in many cases define a fission tree controlling this decomposition. Further in type A we will show one obtains cabled versions of braid groups, related to braid operads.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Braid theory ; Braiding ; Decomposition ; Lie groups ; Mapping ; Riemann surfaces</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Douçot, Jean</creatorcontrib><creatorcontrib>Rembado, Gabriele</creatorcontrib><creatorcontrib>Tamiozzo, Matteo</creatorcontrib><title>Local wild mapping class groups and cabled braids</title><title>arXiv.org</title><description>We will define and study some generalisations of pure \(\mathfrak{g}\)-braid groups that occur in the theory of connections on curves, for any complex reductive Lie algebra \(\mathfrak{g}\). They make up local pieces of the wild mapping class groups, which are fundamental groups of (universal) deformations of wild Riemann surfaces, underlying the braiding of Stokes data and generalising the usual mapping class groups. We will establish a general product decomposition for the local wild mapping class groups, and in many cases define a fission tree controlling this decomposition. Further in type A we will show one obtains cabled versions of braid groups, related to braid operads.</description><subject>Braid theory</subject><subject>Braiding</subject><subject>Decomposition</subject><subject>Lie groups</subject><subject>Mapping</subject><subject>Riemann surfaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOxw4F5JLG7uL4uDoXq5NLS0xiTmDr6-DD-D0D9-_EgVqraq2RtyIknmRUqI5YNPoQqhrGMjBe3YWHhTj7CcYHDHDlEKODOQtDNS70UKfaLa8E-s7OR7LX7difz7djpcqpvDMI7-6JeTkv9ShabBWRqlW_3d9AH7vMx4</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Douçot, Jean</creator><creator>Rembado, Gabriele</creator><creator>Tamiozzo, Matteo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240206</creationdate><title>Local wild mapping class groups and cabled braids</title><author>Douçot, Jean ; Rembado, Gabriele ; Tamiozzo, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26524161183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Braid theory</topic><topic>Braiding</topic><topic>Decomposition</topic><topic>Lie groups</topic><topic>Mapping</topic><topic>Riemann surfaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Douçot, Jean</creatorcontrib><creatorcontrib>Rembado, Gabriele</creatorcontrib><creatorcontrib>Tamiozzo, Matteo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douçot, Jean</au><au>Rembado, Gabriele</au><au>Tamiozzo, Matteo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Local wild mapping class groups and cabled braids</atitle><jtitle>arXiv.org</jtitle><date>2024-02-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We will define and study some generalisations of pure \(\mathfrak{g}\)-braid groups that occur in the theory of connections on curves, for any complex reductive Lie algebra \(\mathfrak{g}\). They make up local pieces of the wild mapping class groups, which are fundamental groups of (universal) deformations of wild Riemann surfaces, underlying the braiding of Stokes data and generalising the usual mapping class groups. We will establish a general product decomposition for the local wild mapping class groups, and in many cases define a fission tree controlling this decomposition. Further in type A we will show one obtains cabled versions of braid groups, related to braid operads.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2652416118 |
source | Free E- Journals |
subjects | Braid theory Braiding Decomposition Lie groups Mapping Riemann surfaces |
title | Local wild mapping class groups and cabled braids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Local%20wild%20mapping%20class%20groups%20and%20cabled%20braids&rft.jtitle=arXiv.org&rft.au=Dou%C3%A7ot,%20Jean&rft.date=2024-02-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2652416118%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652416118&rft_id=info:pmid/&rfr_iscdi=true |