(2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method
For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liang, Xiao Li, Mingfan Xiao, Qian An, Hong He, Lixin Zhao, Xuncheng Chen, Junshi Yang, Chao Wang, Fei Qian, Hong Shen, Li Jia, Dongning Gu, Yongjian Liu, Xin Wei, Zhiqiang |
description | For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed deep learning methods provide a very promising new route to solve the long-standing quantum many-body problems. We report that a deep learning based simulation protocol can achieve the solution with state-of-the-art precision in the Hilbert space as large as \(2^{1296}\) for spin system and \(3^{144}\) for fermion system , using a HPC-AI hybrid framework on the new Sunway supercomputer. With highly scalability up to 40 million heterogeneous cores, our applications have measured 94% weak scaling efficiency and 72% strong scaling efficiency. The accomplishment of this work opens the door to simulate spin models and Fermion models on unprecedented lattice size with extreme high precision. |
doi_str_mv | 10.48550/arxiv.2204.07816 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2652416073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652416073</sourcerecordid><originalsourceid>FETCH-proquest_journals_26524160733</originalsourceid><addsrcrecordid>eNqNyrFOwzAUQFGrEhIV9APYntQFhgT7OXbCSinqQIeqHRHlQU3ryrFDYleJEP8OAx_AdIdzGbsSPC8qpfgttb095Yi8yHlZCT1iY5RSZFWBeM4mXXfknKMuUSk5Zq_X-PIl8E5_P9_AvG-CNz5acm6AWagbZ3pYJfIx1bAkP2T3YTfA2tbJUbTBw8kSrN_J0Zsz8GBMA0-GWm_9HpYmHsLukp19kOvM5K8XbPo438wWWdOGz2S6uD2G1Ppf2qJWWAjNSyn_d_0ArU9Jrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652416073</pqid></control><display><type>article</type><title>(2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method</title><source>Free E- Journals</source><creator>Liang, Xiao ; Li, Mingfan ; Xiao, Qian ; An, Hong ; He, Lixin ; Zhao, Xuncheng ; Chen, Junshi ; Yang, Chao ; Wang, Fei ; Qian, Hong ; Shen, Li ; Jia, Dongning ; Gu, Yongjian ; Liu, Xin ; Wei, Zhiqiang</creator><creatorcontrib>Liang, Xiao ; Li, Mingfan ; Xiao, Qian ; An, Hong ; He, Lixin ; Zhao, Xuncheng ; Chen, Junshi ; Yang, Chao ; Wang, Fei ; Qian, Hong ; Shen, Li ; Jia, Dongning ; Gu, Yongjian ; Liu, Xin ; Wei, Zhiqiang</creatorcontrib><description>For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed deep learning methods provide a very promising new route to solve the long-standing quantum many-body problems. We report that a deep learning based simulation protocol can achieve the solution with state-of-the-art precision in the Hilbert space as large as \(2^{1296}\) for spin system and \(3^{144}\) for fermion system , using a HPC-AI hybrid framework on the new Sunway supercomputer. With highly scalability up to 40 million heterogeneous cores, our applications have measured 94% weak scaling efficiency and 72% strong scaling efficiency. The accomplishment of this work opens the door to simulate spin models and Fermion models on unprecedented lattice size with extreme high precision.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2204.07816</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deep learning ; Fermions ; Hilbert space ; Hybrid systems ; Numerical methods ; Simulation ; Teaching methods</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Li, Mingfan</creatorcontrib><creatorcontrib>Xiao, Qian</creatorcontrib><creatorcontrib>An, Hong</creatorcontrib><creatorcontrib>He, Lixin</creatorcontrib><creatorcontrib>Zhao, Xuncheng</creatorcontrib><creatorcontrib>Chen, Junshi</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qian, Hong</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Jia, Dongning</creatorcontrib><creatorcontrib>Gu, Yongjian</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Wei, Zhiqiang</creatorcontrib><title>(2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method</title><title>arXiv.org</title><description>For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed deep learning methods provide a very promising new route to solve the long-standing quantum many-body problems. We report that a deep learning based simulation protocol can achieve the solution with state-of-the-art precision in the Hilbert space as large as \(2^{1296}\) for spin system and \(3^{144}\) for fermion system , using a HPC-AI hybrid framework on the new Sunway supercomputer. With highly scalability up to 40 million heterogeneous cores, our applications have measured 94% weak scaling efficiency and 72% strong scaling efficiency. The accomplishment of this work opens the door to simulate spin models and Fermion models on unprecedented lattice size with extreme high precision.</description><subject>Deep learning</subject><subject>Fermions</subject><subject>Hilbert space</subject><subject>Hybrid systems</subject><subject>Numerical methods</subject><subject>Simulation</subject><subject>Teaching methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrFOwzAUQFGrEhIV9APYntQFhgT7OXbCSinqQIeqHRHlQU3ryrFDYleJEP8OAx_AdIdzGbsSPC8qpfgttb095Yi8yHlZCT1iY5RSZFWBeM4mXXfknKMuUSk5Zq_X-PIl8E5_P9_AvG-CNz5acm6AWagbZ3pYJfIx1bAkP2T3YTfA2tbJUbTBw8kSrN_J0Zsz8GBMA0-GWm_9HpYmHsLukp19kOvM5K8XbPo438wWWdOGz2S6uD2G1Ppf2qJWWAjNSyn_d_0ArU9Jrw</recordid><startdate>20220416</startdate><enddate>20220416</enddate><creator>Liang, Xiao</creator><creator>Li, Mingfan</creator><creator>Xiao, Qian</creator><creator>An, Hong</creator><creator>He, Lixin</creator><creator>Zhao, Xuncheng</creator><creator>Chen, Junshi</creator><creator>Yang, Chao</creator><creator>Wang, Fei</creator><creator>Qian, Hong</creator><creator>Shen, Li</creator><creator>Jia, Dongning</creator><creator>Gu, Yongjian</creator><creator>Liu, Xin</creator><creator>Wei, Zhiqiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220416</creationdate><title>(2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method</title><author>Liang, Xiao ; Li, Mingfan ; Xiao, Qian ; An, Hong ; He, Lixin ; Zhao, Xuncheng ; Chen, Junshi ; Yang, Chao ; Wang, Fei ; Qian, Hong ; Shen, Li ; Jia, Dongning ; Gu, Yongjian ; Liu, Xin ; Wei, Zhiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26524160733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Fermions</topic><topic>Hilbert space</topic><topic>Hybrid systems</topic><topic>Numerical methods</topic><topic>Simulation</topic><topic>Teaching methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Li, Mingfan</creatorcontrib><creatorcontrib>Xiao, Qian</creatorcontrib><creatorcontrib>An, Hong</creatorcontrib><creatorcontrib>He, Lixin</creatorcontrib><creatorcontrib>Zhao, Xuncheng</creatorcontrib><creatorcontrib>Chen, Junshi</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qian, Hong</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Jia, Dongning</creatorcontrib><creatorcontrib>Gu, Yongjian</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Wei, Zhiqiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiao</au><au>Li, Mingfan</au><au>Xiao, Qian</au><au>An, Hong</au><au>He, Lixin</au><au>Zhao, Xuncheng</au><au>Chen, Junshi</au><au>Yang, Chao</au><au>Wang, Fei</au><au>Qian, Hong</au><au>Shen, Li</au><au>Jia, Dongning</au><au>Gu, Yongjian</au><au>Liu, Xin</au><au>Wei, Zhiqiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method</atitle><jtitle>arXiv.org</jtitle><date>2022-04-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed deep learning methods provide a very promising new route to solve the long-standing quantum many-body problems. We report that a deep learning based simulation protocol can achieve the solution with state-of-the-art precision in the Hilbert space as large as \(2^{1296}\) for spin system and \(3^{144}\) for fermion system , using a HPC-AI hybrid framework on the new Sunway supercomputer. With highly scalability up to 40 million heterogeneous cores, our applications have measured 94% weak scaling efficiency and 72% strong scaling efficiency. The accomplishment of this work opens the door to simulate spin models and Fermion models on unprecedented lattice size with extreme high precision.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2204.07816</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2652416073 |
source | Free E- Journals |
subjects | Deep learning Fermions Hilbert space Hybrid systems Numerical methods Simulation Teaching methods |
title | (2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(2%5E%7B1296%7D%5C)%20Exponentially%20Complex%20Quantum%20Many-Body%20Simulation%20via%20Scalable%20Deep%20Learning%20Method&rft.jtitle=arXiv.org&rft.au=Liang,%20Xiao&rft.date=2022-04-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2204.07816&rft_dat=%3Cproquest%3E2652416073%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652416073&rft_id=info:pmid/&rfr_iscdi=true |