(2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method

For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Liang, Xiao, Li, Mingfan, Xiao, Qian, An, Hong, He, Lixin, Zhao, Xuncheng, Chen, Junshi, Yang, Chao, Wang, Fei, Qian, Hong, Shen, Li, Jia, Dongning, Gu, Yongjian, Liu, Xin, Wei, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liang, Xiao
Li, Mingfan
Xiao, Qian
An, Hong
He, Lixin
Zhao, Xuncheng
Chen, Junshi
Yang, Chao
Wang, Fei
Qian, Hong
Shen, Li
Jia, Dongning
Gu, Yongjian
Liu, Xin
Wei, Zhiqiang
description For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed deep learning methods provide a very promising new route to solve the long-standing quantum many-body problems. We report that a deep learning based simulation protocol can achieve the solution with state-of-the-art precision in the Hilbert space as large as \(2^{1296}\) for spin system and \(3^{144}\) for fermion system , using a HPC-AI hybrid framework on the new Sunway supercomputer. With highly scalability up to 40 million heterogeneous cores, our applications have measured 94% weak scaling efficiency and 72% strong scaling efficiency. The accomplishment of this work opens the door to simulate spin models and Fermion models on unprecedented lattice size with extreme high precision.
doi_str_mv 10.48550/arxiv.2204.07816
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2652416073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652416073</sourcerecordid><originalsourceid>FETCH-proquest_journals_26524160733</originalsourceid><addsrcrecordid>eNqNyrFOwzAUQFGrEhIV9APYntQFhgT7OXbCSinqQIeqHRHlQU3ryrFDYleJEP8OAx_AdIdzGbsSPC8qpfgttb095Yi8yHlZCT1iY5RSZFWBeM4mXXfknKMuUSk5Zq_X-PIl8E5_P9_AvG-CNz5acm6AWagbZ3pYJfIx1bAkP2T3YTfA2tbJUbTBw8kSrN_J0Zsz8GBMA0-GWm_9HpYmHsLukp19kOvM5K8XbPo438wWWdOGz2S6uD2G1Ppf2qJWWAjNSyn_d_0ArU9Jrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652416073</pqid></control><display><type>article</type><title>(2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method</title><source>Free E- Journals</source><creator>Liang, Xiao ; Li, Mingfan ; Xiao, Qian ; An, Hong ; He, Lixin ; Zhao, Xuncheng ; Chen, Junshi ; Yang, Chao ; Wang, Fei ; Qian, Hong ; Shen, Li ; Jia, Dongning ; Gu, Yongjian ; Liu, Xin ; Wei, Zhiqiang</creator><creatorcontrib>Liang, Xiao ; Li, Mingfan ; Xiao, Qian ; An, Hong ; He, Lixin ; Zhao, Xuncheng ; Chen, Junshi ; Yang, Chao ; Wang, Fei ; Qian, Hong ; Shen, Li ; Jia, Dongning ; Gu, Yongjian ; Liu, Xin ; Wei, Zhiqiang</creatorcontrib><description>For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed deep learning methods provide a very promising new route to solve the long-standing quantum many-body problems. We report that a deep learning based simulation protocol can achieve the solution with state-of-the-art precision in the Hilbert space as large as \(2^{1296}\) for spin system and \(3^{144}\) for fermion system , using a HPC-AI hybrid framework on the new Sunway supercomputer. With highly scalability up to 40 million heterogeneous cores, our applications have measured 94% weak scaling efficiency and 72% strong scaling efficiency. The accomplishment of this work opens the door to simulate spin models and Fermion models on unprecedented lattice size with extreme high precision.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2204.07816</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deep learning ; Fermions ; Hilbert space ; Hybrid systems ; Numerical methods ; Simulation ; Teaching methods</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Li, Mingfan</creatorcontrib><creatorcontrib>Xiao, Qian</creatorcontrib><creatorcontrib>An, Hong</creatorcontrib><creatorcontrib>He, Lixin</creatorcontrib><creatorcontrib>Zhao, Xuncheng</creatorcontrib><creatorcontrib>Chen, Junshi</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qian, Hong</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Jia, Dongning</creatorcontrib><creatorcontrib>Gu, Yongjian</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Wei, Zhiqiang</creatorcontrib><title>(2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method</title><title>arXiv.org</title><description>For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed deep learning methods provide a very promising new route to solve the long-standing quantum many-body problems. We report that a deep learning based simulation protocol can achieve the solution with state-of-the-art precision in the Hilbert space as large as \(2^{1296}\) for spin system and \(3^{144}\) for fermion system , using a HPC-AI hybrid framework on the new Sunway supercomputer. With highly scalability up to 40 million heterogeneous cores, our applications have measured 94% weak scaling efficiency and 72% strong scaling efficiency. The accomplishment of this work opens the door to simulate spin models and Fermion models on unprecedented lattice size with extreme high precision.</description><subject>Deep learning</subject><subject>Fermions</subject><subject>Hilbert space</subject><subject>Hybrid systems</subject><subject>Numerical methods</subject><subject>Simulation</subject><subject>Teaching methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrFOwzAUQFGrEhIV9APYntQFhgT7OXbCSinqQIeqHRHlQU3ryrFDYleJEP8OAx_AdIdzGbsSPC8qpfgttb095Yi8yHlZCT1iY5RSZFWBeM4mXXfknKMuUSk5Zq_X-PIl8E5_P9_AvG-CNz5acm6AWagbZ3pYJfIx1bAkP2T3YTfA2tbJUbTBw8kSrN_J0Zsz8GBMA0-GWm_9HpYmHsLukp19kOvM5K8XbPo438wWWdOGz2S6uD2G1Ppf2qJWWAjNSyn_d_0ArU9Jrw</recordid><startdate>20220416</startdate><enddate>20220416</enddate><creator>Liang, Xiao</creator><creator>Li, Mingfan</creator><creator>Xiao, Qian</creator><creator>An, Hong</creator><creator>He, Lixin</creator><creator>Zhao, Xuncheng</creator><creator>Chen, Junshi</creator><creator>Yang, Chao</creator><creator>Wang, Fei</creator><creator>Qian, Hong</creator><creator>Shen, Li</creator><creator>Jia, Dongning</creator><creator>Gu, Yongjian</creator><creator>Liu, Xin</creator><creator>Wei, Zhiqiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220416</creationdate><title>(2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method</title><author>Liang, Xiao ; Li, Mingfan ; Xiao, Qian ; An, Hong ; He, Lixin ; Zhao, Xuncheng ; Chen, Junshi ; Yang, Chao ; Wang, Fei ; Qian, Hong ; Shen, Li ; Jia, Dongning ; Gu, Yongjian ; Liu, Xin ; Wei, Zhiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26524160733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Fermions</topic><topic>Hilbert space</topic><topic>Hybrid systems</topic><topic>Numerical methods</topic><topic>Simulation</topic><topic>Teaching methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Li, Mingfan</creatorcontrib><creatorcontrib>Xiao, Qian</creatorcontrib><creatorcontrib>An, Hong</creatorcontrib><creatorcontrib>He, Lixin</creatorcontrib><creatorcontrib>Zhao, Xuncheng</creatorcontrib><creatorcontrib>Chen, Junshi</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qian, Hong</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Jia, Dongning</creatorcontrib><creatorcontrib>Gu, Yongjian</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Wei, Zhiqiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiao</au><au>Li, Mingfan</au><au>Xiao, Qian</au><au>An, Hong</au><au>He, Lixin</au><au>Zhao, Xuncheng</au><au>Chen, Junshi</au><au>Yang, Chao</au><au>Wang, Fei</au><au>Qian, Hong</au><au>Shen, Li</au><au>Jia, Dongning</au><au>Gu, Yongjian</au><au>Liu, Xin</au><au>Wei, Zhiqiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method</atitle><jtitle>arXiv.org</jtitle><date>2022-04-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>For decades, people are developing efficient numerical methods for solving the challenging quantum many-body problem, whose Hilbert space grows exponentially with the size of the problem. However, this journey is far from over, as previous methods all have serious limitations. The recently developed deep learning methods provide a very promising new route to solve the long-standing quantum many-body problems. We report that a deep learning based simulation protocol can achieve the solution with state-of-the-art precision in the Hilbert space as large as \(2^{1296}\) for spin system and \(3^{144}\) for fermion system , using a HPC-AI hybrid framework on the new Sunway supercomputer. With highly scalability up to 40 million heterogeneous cores, our applications have measured 94% weak scaling efficiency and 72% strong scaling efficiency. The accomplishment of this work opens the door to simulate spin models and Fermion models on unprecedented lattice size with extreme high precision.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2204.07816</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2652416073
source Free E- Journals
subjects Deep learning
Fermions
Hilbert space
Hybrid systems
Numerical methods
Simulation
Teaching methods
title (2^{1296}\) Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(2%5E%7B1296%7D%5C)%20Exponentially%20Complex%20Quantum%20Many-Body%20Simulation%20via%20Scalable%20Deep%20Learning%20Method&rft.jtitle=arXiv.org&rft.au=Liang,%20Xiao&rft.date=2022-04-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2204.07816&rft_dat=%3Cproquest%3E2652416073%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652416073&rft_id=info:pmid/&rfr_iscdi=true