Alpine meadow degradation depresses soil nitrogen fixation by regulating plant functional groups and diazotrophic community composition
Aims Biological nitrogen fixation (BNF), a function performed by diazotrophic microbes, plays an essential role in nitrogen (N) bioavailability in terrestrial ecosystems. However, little is known about the effects of meadow degradation on soil BNF and diazotrophic communities in alpine meadows. Meth...
Gespeichert in:
Veröffentlicht in: | Plant and soil 2022-04, Vol.473 (1-2), p.319-335 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims
Biological nitrogen fixation (BNF), a function performed by diazotrophic microbes, plays an essential role in nitrogen (N) bioavailability in terrestrial ecosystems. However, little is known about the effects of meadow degradation on soil BNF and diazotrophic communities in alpine meadows.
Methods
We investigated changes in soil BNF and their potential drivers in alpine meadows along a degradation gradient on the Tibetan Plateau (non-degraded, lightly degraded, moderately degraded, and severely degraded meadows) using real-time quantitative PCR and amplicon sequencing.
Results
Soil BNF rates decreased significantly along the meadow degradation gradient with a range of 17.34–79.84 nmol C
2
H
4
g
−1
dry soil d
−1
across all sites. The highest BNF rate in the non-degraded meadow was 1.5–4.6-fold higher than that in the degraded meadows. The abundance and diversity of diazotrophs measured by
nifH
abundance and Shannon diversity was also decreased in the degraded meadows, accompanied by decreases in plant biomass, soil moisture, and nutrient content (C, N). Soil BNF rate was correlated with plant biomass, soil nutrient content, and diazotrophic abundance (including
Nostoc
,
Scytonema
,
Rhodopseudomonas
, and unidentified genera within the Rhizobiales and Proteobacteria). The community composition of diazotrophs differed markedly among sites with different levels of degradation, with both autotrophic (Cyanobacteria) and heterotrophic (Proteobacteria) diazotrophs contributing significantly to BNF. The plant functional groups, particularly the sedge family, were the primary drivers of soil BNF rates via mediating soil moisture, nutrient content (dissolved organic C and N),
nifH
gene abundance, and diazotrophic community composition.
Conclusions
Our results reveal the main drivers of decreased BNF during alpine meadow degradation and emphasize the importance of plant functional groups in shaping the diazotrophic community and regulating the BNF rate. This information can be applied to the restoration of degraded meadow ecosystems. |
---|---|
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/s11104-021-05287-z |