AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages
Dialogue generation is an important NLP task fraught with many challenges. The challenges become more daunting for low-resource African languages. To enable the creation of dialogue agents for African languages, we contribute the first high-quality dialogue datasets for 6 African languages: Swahili,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Adewumi, Tosin Adeyemi, Mofetoluwa Aremu Anuoluwapo Peters, Bukola Buzaaba, Happy Oyerinde Samuel Rufai, Amina Mardiyyah Ajibade, Benjamin Gwadabe, Tajudeen Mory Moussou Koulibaly Traore Ajayi, Tunde Shamsuddeen Muhammad Baruwa, Ahmed Owoicho, Paul Ogunremi, Tolulope Ngigi, Phylis Ahia, Orevaoghene Nasir, Ruqayya Liwicki, Foteini Liwicki, Marcus |
description | Dialogue generation is an important NLP task fraught with many challenges. The challenges become more daunting for low-resource African languages. To enable the creation of dialogue agents for African languages, we contribute the first high-quality dialogue datasets for 6 African languages: Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda & Yorùbá. These datasets consist of 1,500 turns each, which we translate from a portion of the English multi-domain MultiWOZ dataset. Subsequently, we investigate & analyze the effectiveness of modelling through transfer learning by utilziing state-of-the-art (SoTA) deep monolingual models: DialoGPT and BlenderBot. We compare the models with a simple seq2seq baseline using perplexity. Besides this, we conduct human evaluation of single-turn conversations by using majority votes and measure inter-annotator agreement (IAA). We find that the hypothesis that deep monolingual models learn some abstractions that generalize across languages holds. We observe human-like conversations, to different degrees, in 5 out of the 6 languages. The language with the most transferable properties is the Nigerian Pidgin English, with a human-likeness score of 78.1%, of which 34.4% are unanimous. We freely provide the datasets and host the model checkpoints/demos on the HuggingFace hub for public access. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2652412446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652412446</sourcerecordid><originalsourceid>FETCH-proquest_journals_26524124463</originalsourceid><addsrcrecordid>eNqNTckKwjAQDYKgqP8w4NVCTRfFm9TtIAhSELxILElJCZmaaVHx543iB3h6j7d2WJ9H0TSYx5z32IioCsOQpzOeJFGfvZbK6dPhvIAMXd0SKHSwftQGdaNtCZlDomDvaSsM5E5YUtKJqza6eX7DW2m90Gi0gApWWhgsW0mgLezxHhwlYesKOYHPUyG8Kj5jpaQh6yphSI5-OGDjzTrPdkHt8OYnmkvlq9ZbF54mPJ7yOE6j_1JvM9BOeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652412446</pqid></control><display><type>article</type><title>AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages</title><source>Free E- Journals</source><creator>Adewumi, Tosin ; Adeyemi, Mofetoluwa ; Aremu Anuoluwapo ; Peters, Bukola ; Buzaaba, Happy ; Oyerinde Samuel ; Rufai, Amina Mardiyyah ; Ajibade, Benjamin ; Gwadabe, Tajudeen ; Mory Moussou Koulibaly Traore ; Ajayi, Tunde ; Shamsuddeen Muhammad ; Baruwa, Ahmed ; Owoicho, Paul ; Ogunremi, Tolulope ; Ngigi, Phylis ; Ahia, Orevaoghene ; Nasir, Ruqayya ; Liwicki, Foteini ; Liwicki, Marcus</creator><creatorcontrib>Adewumi, Tosin ; Adeyemi, Mofetoluwa ; Aremu Anuoluwapo ; Peters, Bukola ; Buzaaba, Happy ; Oyerinde Samuel ; Rufai, Amina Mardiyyah ; Ajibade, Benjamin ; Gwadabe, Tajudeen ; Mory Moussou Koulibaly Traore ; Ajayi, Tunde ; Shamsuddeen Muhammad ; Baruwa, Ahmed ; Owoicho, Paul ; Ogunremi, Tolulope ; Ngigi, Phylis ; Ahia, Orevaoghene ; Nasir, Ruqayya ; Liwicki, Foteini ; Liwicki, Marcus</creatorcontrib><description>Dialogue generation is an important NLP task fraught with many challenges. The challenges become more daunting for low-resource African languages. To enable the creation of dialogue agents for African languages, we contribute the first high-quality dialogue datasets for 6 African languages: Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda & Yorùbá. These datasets consist of 1,500 turns each, which we translate from a portion of the English multi-domain MultiWOZ dataset. Subsequently, we investigate & analyze the effectiveness of modelling through transfer learning by utilziing state-of-the-art (SoTA) deep monolingual models: DialoGPT and BlenderBot. We compare the models with a simple seq2seq baseline using perplexity. Besides this, we conduct human evaluation of single-turn conversations by using majority votes and measure inter-annotator agreement (IAA). We find that the hypothesis that deep monolingual models learn some abstractions that generalize across languages holds. We observe human-like conversations, to different degrees, in 5 out of the 6 languages. The language with the most transferable properties is the Nigerian Pidgin English, with a human-likeness score of 78.1%, of which 34.4% are unanimous. We freely provide the datasets and host the model checkpoints/demos on the HuggingFace hub for public access.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>African languages ; Datasets ; English language ; Evaluation ; Hypotheses ; Languages ; Speech recognition</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Adewumi, Tosin</creatorcontrib><creatorcontrib>Adeyemi, Mofetoluwa</creatorcontrib><creatorcontrib>Aremu Anuoluwapo</creatorcontrib><creatorcontrib>Peters, Bukola</creatorcontrib><creatorcontrib>Buzaaba, Happy</creatorcontrib><creatorcontrib>Oyerinde Samuel</creatorcontrib><creatorcontrib>Rufai, Amina Mardiyyah</creatorcontrib><creatorcontrib>Ajibade, Benjamin</creatorcontrib><creatorcontrib>Gwadabe, Tajudeen</creatorcontrib><creatorcontrib>Mory Moussou Koulibaly Traore</creatorcontrib><creatorcontrib>Ajayi, Tunde</creatorcontrib><creatorcontrib>Shamsuddeen Muhammad</creatorcontrib><creatorcontrib>Baruwa, Ahmed</creatorcontrib><creatorcontrib>Owoicho, Paul</creatorcontrib><creatorcontrib>Ogunremi, Tolulope</creatorcontrib><creatorcontrib>Ngigi, Phylis</creatorcontrib><creatorcontrib>Ahia, Orevaoghene</creatorcontrib><creatorcontrib>Nasir, Ruqayya</creatorcontrib><creatorcontrib>Liwicki, Foteini</creatorcontrib><creatorcontrib>Liwicki, Marcus</creatorcontrib><title>AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages</title><title>arXiv.org</title><description>Dialogue generation is an important NLP task fraught with many challenges. The challenges become more daunting for low-resource African languages. To enable the creation of dialogue agents for African languages, we contribute the first high-quality dialogue datasets for 6 African languages: Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda & Yorùbá. These datasets consist of 1,500 turns each, which we translate from a portion of the English multi-domain MultiWOZ dataset. Subsequently, we investigate & analyze the effectiveness of modelling through transfer learning by utilziing state-of-the-art (SoTA) deep monolingual models: DialoGPT and BlenderBot. We compare the models with a simple seq2seq baseline using perplexity. Besides this, we conduct human evaluation of single-turn conversations by using majority votes and measure inter-annotator agreement (IAA). We find that the hypothesis that deep monolingual models learn some abstractions that generalize across languages holds. We observe human-like conversations, to different degrees, in 5 out of the 6 languages. The language with the most transferable properties is the Nigerian Pidgin English, with a human-likeness score of 78.1%, of which 34.4% are unanimous. We freely provide the datasets and host the model checkpoints/demos on the HuggingFace hub for public access.</description><subject>African languages</subject><subject>Datasets</subject><subject>English language</subject><subject>Evaluation</subject><subject>Hypotheses</subject><subject>Languages</subject><subject>Speech recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNTckKwjAQDYKgqP8w4NVCTRfFm9TtIAhSELxILElJCZmaaVHx543iB3h6j7d2WJ9H0TSYx5z32IioCsOQpzOeJFGfvZbK6dPhvIAMXd0SKHSwftQGdaNtCZlDomDvaSsM5E5YUtKJqza6eX7DW2m90Gi0gApWWhgsW0mgLezxHhwlYesKOYHPUyG8Kj5jpaQh6yphSI5-OGDjzTrPdkHt8OYnmkvlq9ZbF54mPJ7yOE6j_1JvM9BOeg</recordid><startdate>20220519</startdate><enddate>20220519</enddate><creator>Adewumi, Tosin</creator><creator>Adeyemi, Mofetoluwa</creator><creator>Aremu Anuoluwapo</creator><creator>Peters, Bukola</creator><creator>Buzaaba, Happy</creator><creator>Oyerinde Samuel</creator><creator>Rufai, Amina Mardiyyah</creator><creator>Ajibade, Benjamin</creator><creator>Gwadabe, Tajudeen</creator><creator>Mory Moussou Koulibaly Traore</creator><creator>Ajayi, Tunde</creator><creator>Shamsuddeen Muhammad</creator><creator>Baruwa, Ahmed</creator><creator>Owoicho, Paul</creator><creator>Ogunremi, Tolulope</creator><creator>Ngigi, Phylis</creator><creator>Ahia, Orevaoghene</creator><creator>Nasir, Ruqayya</creator><creator>Liwicki, Foteini</creator><creator>Liwicki, Marcus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220519</creationdate><title>AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages</title><author>Adewumi, Tosin ; Adeyemi, Mofetoluwa ; Aremu Anuoluwapo ; Peters, Bukola ; Buzaaba, Happy ; Oyerinde Samuel ; Rufai, Amina Mardiyyah ; Ajibade, Benjamin ; Gwadabe, Tajudeen ; Mory Moussou Koulibaly Traore ; Ajayi, Tunde ; Shamsuddeen Muhammad ; Baruwa, Ahmed ; Owoicho, Paul ; Ogunremi, Tolulope ; Ngigi, Phylis ; Ahia, Orevaoghene ; Nasir, Ruqayya ; Liwicki, Foteini ; Liwicki, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26524124463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>African languages</topic><topic>Datasets</topic><topic>English language</topic><topic>Evaluation</topic><topic>Hypotheses</topic><topic>Languages</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Adewumi, Tosin</creatorcontrib><creatorcontrib>Adeyemi, Mofetoluwa</creatorcontrib><creatorcontrib>Aremu Anuoluwapo</creatorcontrib><creatorcontrib>Peters, Bukola</creatorcontrib><creatorcontrib>Buzaaba, Happy</creatorcontrib><creatorcontrib>Oyerinde Samuel</creatorcontrib><creatorcontrib>Rufai, Amina Mardiyyah</creatorcontrib><creatorcontrib>Ajibade, Benjamin</creatorcontrib><creatorcontrib>Gwadabe, Tajudeen</creatorcontrib><creatorcontrib>Mory Moussou Koulibaly Traore</creatorcontrib><creatorcontrib>Ajayi, Tunde</creatorcontrib><creatorcontrib>Shamsuddeen Muhammad</creatorcontrib><creatorcontrib>Baruwa, Ahmed</creatorcontrib><creatorcontrib>Owoicho, Paul</creatorcontrib><creatorcontrib>Ogunremi, Tolulope</creatorcontrib><creatorcontrib>Ngigi, Phylis</creatorcontrib><creatorcontrib>Ahia, Orevaoghene</creatorcontrib><creatorcontrib>Nasir, Ruqayya</creatorcontrib><creatorcontrib>Liwicki, Foteini</creatorcontrib><creatorcontrib>Liwicki, Marcus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adewumi, Tosin</au><au>Adeyemi, Mofetoluwa</au><au>Aremu Anuoluwapo</au><au>Peters, Bukola</au><au>Buzaaba, Happy</au><au>Oyerinde Samuel</au><au>Rufai, Amina Mardiyyah</au><au>Ajibade, Benjamin</au><au>Gwadabe, Tajudeen</au><au>Mory Moussou Koulibaly Traore</au><au>Ajayi, Tunde</au><au>Shamsuddeen Muhammad</au><au>Baruwa, Ahmed</au><au>Owoicho, Paul</au><au>Ogunremi, Tolulope</au><au>Ngigi, Phylis</au><au>Ahia, Orevaoghene</au><au>Nasir, Ruqayya</au><au>Liwicki, Foteini</au><au>Liwicki, Marcus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages</atitle><jtitle>arXiv.org</jtitle><date>2022-05-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Dialogue generation is an important NLP task fraught with many challenges. The challenges become more daunting for low-resource African languages. To enable the creation of dialogue agents for African languages, we contribute the first high-quality dialogue datasets for 6 African languages: Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda & Yorùbá. These datasets consist of 1,500 turns each, which we translate from a portion of the English multi-domain MultiWOZ dataset. Subsequently, we investigate & analyze the effectiveness of modelling through transfer learning by utilziing state-of-the-art (SoTA) deep monolingual models: DialoGPT and BlenderBot. We compare the models with a simple seq2seq baseline using perplexity. Besides this, we conduct human evaluation of single-turn conversations by using majority votes and measure inter-annotator agreement (IAA). We find that the hypothesis that deep monolingual models learn some abstractions that generalize across languages holds. We observe human-like conversations, to different degrees, in 5 out of the 6 languages. The language with the most transferable properties is the Nigerian Pidgin English, with a human-likeness score of 78.1%, of which 34.4% are unanimous. We freely provide the datasets and host the model checkpoints/demos on the HuggingFace hub for public access.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2652412446 |
source | Free E- Journals |
subjects | African languages Datasets English language Evaluation Hypotheses Languages Speech recognition |
title | AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AfriWOZ:%20Corpus%20for%20Exploiting%20Cross-Lingual%20Transferability%20for%20Generation%20of%20Dialogues%20in%20Low-Resource,%20African%20Languages&rft.jtitle=arXiv.org&rft.au=Adewumi,%20Tosin&rft.date=2022-05-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2652412446%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652412446&rft_id=info:pmid/&rfr_iscdi=true |