A Residual‐Based Differential Item Functioning Detection Framework in Item Response Theory

Differential item functioning (DIF) of test items should be evaluated using practical methods that can produce accurate and useful results. Among a plethora of DIF detection techniques, we introduce the new Residual DIF (RDIF) framework, which stands out for its accessibility without sacrificing eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of educational measurement 2022-03, Vol.59 (1), p.80-104
Hauptverfasser: Lim, Hwanggyu, Choe, Edison M., Han, Kyung T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 1
container_start_page 80
container_title Journal of educational measurement
container_volume 59
creator Lim, Hwanggyu
Choe, Edison M.
Han, Kyung T.
description Differential item functioning (DIF) of test items should be evaluated using practical methods that can produce accurate and useful results. Among a plethora of DIF detection techniques, we introduce the new Residual DIF (RDIF) framework, which stands out for its accessibility without sacrificing efficacy. This framework consists of three item response theory (IRT) residual statistics: RDIFR$RDI{F_R}$, RDIFS$RDI{F_S}$, and RDIFRS$RDI{F_{RS}}$. We conducted a simulation study with a 40‐item test to assess the performance of RDIF in comparison with the Mantel‐Haenszel, logistic regression, and IRT‐based likelihood ratio test methods. Even when analyzing small sample sizes, the results revealed RDIFRS$RDI{F_{RS}}$ to be the most robust DIF detection statistic with strict control of Type I error across all simulated conditions when paired with the purification procedure. Also, RDIFR$RDI{F_R}$ and RDIFS$RDI{F_S}$ proved to be powerful indicators of uniform and nonuniform DIF, respectively. Therefore, RDIFRS$RDI{F_{RS}}$ should serve as the primary flagging criterion, whereas RDIFR$RDI{F_R}$ and RDIFS$RDI{F_S}$ best serve as indicators of DIF type. An empirical DIF study also showed that the RDIF framework could perform satisfactorily with real data from a large‐scale assessment. Overall, the RDIF framework demonstrated its potential as a new standard for IRT‐based DIF detection methodology.
doi_str_mv 10.1111/jedm.12313
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2652302051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1333037</ericid><sourcerecordid>2652302051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3233-78f832b32ef31d5a3729af1e8ea7e7a669037b026d7d24ca1b98d8b74c5292033</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhgdRsFY37oUBd0LqXDKZZFl70RZFkLoThklyolPTpM4klO58BJ_RJ3HaiEtncxj-j-8cfoTOKRlQ_66XkK8GlHHKD1CPylAEPInDQ9QjhLGAREIcoxPnloRQIQXtoZchfgJn8laX359fN9pBjsemKMBC1Rhd4lkDKzxtq6wxdWWqVzyGBvYfPLV6BZvavmNTdZxXrevKAV68QW23p-io0KWDs9_ZR8_TyWJ0F9w_3s5Gw_sg44zzQMZFzFnKGRSc5kJzyRJdUIhBS5A6ihLCZUpYlMuchZmmaRLncSrDTLCEEc776LLzrm390YJr1LJubeVXKhYJxgkjgnrqqqMyWztnoVBra1babhUlatee2rWn9u15-KKDwZrsD5zMfcT9NT6nXb4xJWz_Man5ZPzQOX8AfhF7Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652302051</pqid></control><display><type>article</type><title>A Residual‐Based Differential Item Functioning Detection Framework in Item Response Theory</title><source>Wiley Journals</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>EBSCOhost Education Source</source><creator>Lim, Hwanggyu ; Choe, Edison M. ; Han, Kyung T.</creator><creatorcontrib>Lim, Hwanggyu ; Choe, Edison M. ; Han, Kyung T.</creatorcontrib><description>Differential item functioning (DIF) of test items should be evaluated using practical methods that can produce accurate and useful results. Among a plethora of DIF detection techniques, we introduce the new Residual DIF (RDIF) framework, which stands out for its accessibility without sacrificing efficacy. This framework consists of three item response theory (IRT) residual statistics: RDIFR$RDI{F_R}$, RDIFS$RDI{F_S}$, and RDIFRS$RDI{F_{RS}}$. We conducted a simulation study with a 40‐item test to assess the performance of RDIF in comparison with the Mantel‐Haenszel, logistic regression, and IRT‐based likelihood ratio test methods. Even when analyzing small sample sizes, the results revealed RDIFRS$RDI{F_{RS}}$ to be the most robust DIF detection statistic with strict control of Type I error across all simulated conditions when paired with the purification procedure. Also, RDIFR$RDI{F_R}$ and RDIFS$RDI{F_S}$ proved to be powerful indicators of uniform and nonuniform DIF, respectively. Therefore, RDIFRS$RDI{F_{RS}}$ should serve as the primary flagging criterion, whereas RDIFR$RDI{F_R}$ and RDIFS$RDI{F_S}$ best serve as indicators of DIF type. An empirical DIF study also showed that the RDIF framework could perform satisfactorily with real data from a large‐scale assessment. Overall, the RDIF framework demonstrated its potential as a new standard for IRT‐based DIF detection methodology.</description><identifier>ISSN: 0022-0655</identifier><identifier>EISSN: 1745-3984</identifier><identifier>DOI: 10.1111/jedm.12313</identifier><language>eng</language><publisher>Madison: Wiley</publisher><subject>Access ; Educational tests &amp; measurements ; Efficacy ; Identification ; Item Response Theory ; Purification ; Regression (Statistics) ; Robustness (Statistics) ; Simulation ; Test Items</subject><ispartof>Journal of educational measurement, 2022-03, Vol.59 (1), p.80-104</ispartof><rights>2022 by the National Council on Measurement in Education</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3233-78f832b32ef31d5a3729af1e8ea7e7a669037b026d7d24ca1b98d8b74c5292033</citedby><cites>FETCH-LOGICAL-c3233-78f832b32ef31d5a3729af1e8ea7e7a669037b026d7d24ca1b98d8b74c5292033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjedm.12313$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjedm.12313$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,30999,45574,45575</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1333037$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Hwanggyu</creatorcontrib><creatorcontrib>Choe, Edison M.</creatorcontrib><creatorcontrib>Han, Kyung T.</creatorcontrib><title>A Residual‐Based Differential Item Functioning Detection Framework in Item Response Theory</title><title>Journal of educational measurement</title><description>Differential item functioning (DIF) of test items should be evaluated using practical methods that can produce accurate and useful results. Among a plethora of DIF detection techniques, we introduce the new Residual DIF (RDIF) framework, which stands out for its accessibility without sacrificing efficacy. This framework consists of three item response theory (IRT) residual statistics: RDIFR$RDI{F_R}$, RDIFS$RDI{F_S}$, and RDIFRS$RDI{F_{RS}}$. We conducted a simulation study with a 40‐item test to assess the performance of RDIF in comparison with the Mantel‐Haenszel, logistic regression, and IRT‐based likelihood ratio test methods. Even when analyzing small sample sizes, the results revealed RDIFRS$RDI{F_{RS}}$ to be the most robust DIF detection statistic with strict control of Type I error across all simulated conditions when paired with the purification procedure. Also, RDIFR$RDI{F_R}$ and RDIFS$RDI{F_S}$ proved to be powerful indicators of uniform and nonuniform DIF, respectively. Therefore, RDIFRS$RDI{F_{RS}}$ should serve as the primary flagging criterion, whereas RDIFR$RDI{F_R}$ and RDIFS$RDI{F_S}$ best serve as indicators of DIF type. An empirical DIF study also showed that the RDIF framework could perform satisfactorily with real data from a large‐scale assessment. Overall, the RDIF framework demonstrated its potential as a new standard for IRT‐based DIF detection methodology.</description><subject>Access</subject><subject>Educational tests &amp; measurements</subject><subject>Efficacy</subject><subject>Identification</subject><subject>Item Response Theory</subject><subject>Purification</subject><subject>Regression (Statistics)</subject><subject>Robustness (Statistics)</subject><subject>Simulation</subject><subject>Test Items</subject><issn>0022-0655</issn><issn>1745-3984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp9kMtKw0AUhgdRsFY37oUBd0LqXDKZZFl70RZFkLoThklyolPTpM4klO58BJ_RJ3HaiEtncxj-j-8cfoTOKRlQ_66XkK8GlHHKD1CPylAEPInDQ9QjhLGAREIcoxPnloRQIQXtoZchfgJn8laX359fN9pBjsemKMBC1Rhd4lkDKzxtq6wxdWWqVzyGBvYfPLV6BZvavmNTdZxXrevKAV68QW23p-io0KWDs9_ZR8_TyWJ0F9w_3s5Gw_sg44zzQMZFzFnKGRSc5kJzyRJdUIhBS5A6ihLCZUpYlMuchZmmaRLncSrDTLCEEc776LLzrm390YJr1LJubeVXKhYJxgkjgnrqqqMyWztnoVBra1babhUlatee2rWn9u15-KKDwZrsD5zMfcT9NT6nXb4xJWz_Man5ZPzQOX8AfhF7Zw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Lim, Hwanggyu</creator><creator>Choe, Edison M.</creator><creator>Han, Kyung T.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope></search><sort><creationdate>20220301</creationdate><title>A Residual‐Based Differential Item Functioning Detection Framework in Item Response Theory</title><author>Lim, Hwanggyu ; Choe, Edison M. ; Han, Kyung T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3233-78f832b32ef31d5a3729af1e8ea7e7a669037b026d7d24ca1b98d8b74c5292033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access</topic><topic>Educational tests &amp; measurements</topic><topic>Efficacy</topic><topic>Identification</topic><topic>Item Response Theory</topic><topic>Purification</topic><topic>Regression (Statistics)</topic><topic>Robustness (Statistics)</topic><topic>Simulation</topic><topic>Test Items</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Hwanggyu</creatorcontrib><creatorcontrib>Choe, Edison M.</creatorcontrib><creatorcontrib>Han, Kyung T.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><jtitle>Journal of educational measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Hwanggyu</au><au>Choe, Edison M.</au><au>Han, Kyung T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1333037</ericid><atitle>A Residual‐Based Differential Item Functioning Detection Framework in Item Response Theory</atitle><jtitle>Journal of educational measurement</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>59</volume><issue>1</issue><spage>80</spage><epage>104</epage><pages>80-104</pages><issn>0022-0655</issn><eissn>1745-3984</eissn><abstract>Differential item functioning (DIF) of test items should be evaluated using practical methods that can produce accurate and useful results. Among a plethora of DIF detection techniques, we introduce the new Residual DIF (RDIF) framework, which stands out for its accessibility without sacrificing efficacy. This framework consists of three item response theory (IRT) residual statistics: RDIFR$RDI{F_R}$, RDIFS$RDI{F_S}$, and RDIFRS$RDI{F_{RS}}$. We conducted a simulation study with a 40‐item test to assess the performance of RDIF in comparison with the Mantel‐Haenszel, logistic regression, and IRT‐based likelihood ratio test methods. Even when analyzing small sample sizes, the results revealed RDIFRS$RDI{F_{RS}}$ to be the most robust DIF detection statistic with strict control of Type I error across all simulated conditions when paired with the purification procedure. Also, RDIFR$RDI{F_R}$ and RDIFS$RDI{F_S}$ proved to be powerful indicators of uniform and nonuniform DIF, respectively. Therefore, RDIFRS$RDI{F_{RS}}$ should serve as the primary flagging criterion, whereas RDIFR$RDI{F_R}$ and RDIFS$RDI{F_S}$ best serve as indicators of DIF type. An empirical DIF study also showed that the RDIF framework could perform satisfactorily with real data from a large‐scale assessment. Overall, the RDIF framework demonstrated its potential as a new standard for IRT‐based DIF detection methodology.</abstract><cop>Madison</cop><pub>Wiley</pub><doi>10.1111/jedm.12313</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0655
ispartof Journal of educational measurement, 2022-03, Vol.59 (1), p.80-104
issn 0022-0655
1745-3984
language eng
recordid cdi_proquest_journals_2652302051
source Wiley Journals; Applied Social Sciences Index & Abstracts (ASSIA); EBSCOhost Education Source
subjects Access
Educational tests & measurements
Efficacy
Identification
Item Response Theory
Purification
Regression (Statistics)
Robustness (Statistics)
Simulation
Test Items
title A Residual‐Based Differential Item Functioning Detection Framework in Item Response Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Residual%E2%80%90Based%20Differential%20Item%20Functioning%20Detection%20Framework%20in%20Item%20Response%20Theory&rft.jtitle=Journal%20of%20educational%20measurement&rft.au=Lim,%20Hwanggyu&rft.date=2022-03-01&rft.volume=59&rft.issue=1&rft.spage=80&rft.epage=104&rft.pages=80-104&rft.issn=0022-0655&rft.eissn=1745-3984&rft_id=info:doi/10.1111/jedm.12313&rft_dat=%3Cproquest_cross%3E2652302051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652302051&rft_id=info:pmid/&rft_ericid=EJ1333037&rfr_iscdi=true