An intelligent and efficient network intrusion detection system using deep learning

•An intelligent and efficient network intrusion detection system based on deep learning is proposed.•A novel stacked Non-symmetric deep auto encoder is proposed for unsupervised feature learning.•A novel algorithm utilizes a stacked Non-symmetric deep auto encoder and support vector machine classifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering 2022-04, Vol.99, p.107764, Article 107764
Hauptverfasser: Qazi, Emad-ul-Haq, Imran, Muhammad, Haider, Noman, Shoaib, Muhammad, Razzak, Imran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107764
container_title Computers & electrical engineering
container_volume 99
creator Qazi, Emad-ul-Haq
Imran, Muhammad
Haider, Noman
Shoaib, Muhammad
Razzak, Imran
description •An intelligent and efficient network intrusion detection system based on deep learning is proposed.•A novel stacked Non-symmetric deep auto encoder is proposed for unsupervised feature learning.•A novel algorithm utilizes a stacked Non-symmetric deep auto encoder and support vector machine classifier for network intrusion detection. With continuously escalating threats and attacks, accurate and timely intrusion detection in communication networks is challenging. Many approaches have already been proposed recently on network intrusion detection. However, they face critical challenges due to the continuous increase of new threats that current systems do not understand. Motivated by the outstanding performance of deep learning (DL) in many detection and recognition tasks, we introduce an intelligent and efficient network intrusion detection system (NIDS) based on DL. This study proposes a non-symmetric deep auto-encoder for network intrusion detection problems and presents its detailed functionality and performance. We validate the robustness and effectiveness of the proposed NIDS using a benchmark dataset, i.e., KDD CUP'99. Our DL-based method is implemented in the TensorFlow library and GPU framework, and it achieves an accuracy of 99.65%. The proposed system can be used in network security research domains and DL-based detection and classification systems. [Display omitted]
doi_str_mv 10.1016/j.compeleceng.2022.107764
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2652183985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790622000684</els_id><sourcerecordid>2652183985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-dd1a7b89db2c7fecfb11c5b736c16371e1119df385dc9c723b96e880919b451b3</originalsourceid><addsrcrecordid>eNqNkE9PwzAMxSMEEmPwHYo4d8Rt0yTHaeKfNIkDcI7axJ1SunQkGYhvT6py4MjJfk_Ptvwj5BroCijUt_1Kj_sDDqjR7VYFLYrkc15XJ2QBgsuccsZOyYLSiuVc0vqcXITQ06RrEAvysnaZdRGHwe7QxaxxJsOus9pOymH8Gv37lPDHYEeXGYyo49SF7xBxnyXb7ZKNh2zAxrukLslZ1wwBr37rkrzd371uHvPt88PTZr3NdVnJmBsDDW-FNG2heYe6awE0a3lZa6hLDggA0nSlYEZLzYuylTUKQSXItmLQlktyM-89-PHjiCGqfjx6l06qomYFiFIKllJyTmk_huCxUwdv943_VkDVxFD16g9DNTFUM8M0u5lnMb3xadGrMIHRaKxPGJQZ7T-2_AB954Gz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652183985</pqid></control><display><type>article</type><title>An intelligent and efficient network intrusion detection system using deep learning</title><source>Elsevier ScienceDirect Journals</source><creator>Qazi, Emad-ul-Haq ; Imran, Muhammad ; Haider, Noman ; Shoaib, Muhammad ; Razzak, Imran</creator><creatorcontrib>Qazi, Emad-ul-Haq ; Imran, Muhammad ; Haider, Noman ; Shoaib, Muhammad ; Razzak, Imran</creatorcontrib><description>•An intelligent and efficient network intrusion detection system based on deep learning is proposed.•A novel stacked Non-symmetric deep auto encoder is proposed for unsupervised feature learning.•A novel algorithm utilizes a stacked Non-symmetric deep auto encoder and support vector machine classifier for network intrusion detection. With continuously escalating threats and attacks, accurate and timely intrusion detection in communication networks is challenging. Many approaches have already been proposed recently on network intrusion detection. However, they face critical challenges due to the continuous increase of new threats that current systems do not understand. Motivated by the outstanding performance of deep learning (DL) in many detection and recognition tasks, we introduce an intelligent and efficient network intrusion detection system (NIDS) based on DL. This study proposes a non-symmetric deep auto-encoder for network intrusion detection problems and presents its detailed functionality and performance. We validate the robustness and effectiveness of the proposed NIDS using a benchmark dataset, i.e., KDD CUP'99. Our DL-based method is implemented in the TensorFlow library and GPU framework, and it achieves an accuracy of 99.65%. The proposed system can be used in network security research domains and DL-based detection and classification systems. [Display omitted]</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2022.107764</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Auto-encoder ; Coders ; Communication networks ; Deep learning ; Intrusion detection ; Intrusion detection systems ; Machine learning ; Network security ; Service introduction ; SVM</subject><ispartof>Computers &amp; electrical engineering, 2022-04, Vol.99, p.107764, Article 107764</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-dd1a7b89db2c7fecfb11c5b736c16371e1119df385dc9c723b96e880919b451b3</citedby><cites>FETCH-LOGICAL-c349t-dd1a7b89db2c7fecfb11c5b736c16371e1119df385dc9c723b96e880919b451b3</cites><orcidid>0000-0002-6946-2591 ; 0000-0002-7099-0252 ; 0000-0002-0051-6803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045790622000684$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Qazi, Emad-ul-Haq</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Haider, Noman</creatorcontrib><creatorcontrib>Shoaib, Muhammad</creatorcontrib><creatorcontrib>Razzak, Imran</creatorcontrib><title>An intelligent and efficient network intrusion detection system using deep learning</title><title>Computers &amp; electrical engineering</title><description>•An intelligent and efficient network intrusion detection system based on deep learning is proposed.•A novel stacked Non-symmetric deep auto encoder is proposed for unsupervised feature learning.•A novel algorithm utilizes a stacked Non-symmetric deep auto encoder and support vector machine classifier for network intrusion detection. With continuously escalating threats and attacks, accurate and timely intrusion detection in communication networks is challenging. Many approaches have already been proposed recently on network intrusion detection. However, they face critical challenges due to the continuous increase of new threats that current systems do not understand. Motivated by the outstanding performance of deep learning (DL) in many detection and recognition tasks, we introduce an intelligent and efficient network intrusion detection system (NIDS) based on DL. This study proposes a non-symmetric deep auto-encoder for network intrusion detection problems and presents its detailed functionality and performance. We validate the robustness and effectiveness of the proposed NIDS using a benchmark dataset, i.e., KDD CUP'99. Our DL-based method is implemented in the TensorFlow library and GPU framework, and it achieves an accuracy of 99.65%. The proposed system can be used in network security research domains and DL-based detection and classification systems. [Display omitted]</description><subject>Auto-encoder</subject><subject>Coders</subject><subject>Communication networks</subject><subject>Deep learning</subject><subject>Intrusion detection</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Network security</subject><subject>Service introduction</subject><subject>SVM</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PwzAMxSMEEmPwHYo4d8Rt0yTHaeKfNIkDcI7axJ1SunQkGYhvT6py4MjJfk_Ptvwj5BroCijUt_1Kj_sDDqjR7VYFLYrkc15XJ2QBgsuccsZOyYLSiuVc0vqcXITQ06RrEAvysnaZdRGHwe7QxaxxJsOus9pOymH8Gv37lPDHYEeXGYyo49SF7xBxnyXb7ZKNh2zAxrukLslZ1wwBr37rkrzd371uHvPt88PTZr3NdVnJmBsDDW-FNG2heYe6awE0a3lZa6hLDggA0nSlYEZLzYuylTUKQSXItmLQlktyM-89-PHjiCGqfjx6l06qomYFiFIKllJyTmk_huCxUwdv943_VkDVxFD16g9DNTFUM8M0u5lnMb3xadGrMIHRaKxPGJQZ7T-2_AB954Gz</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Qazi, Emad-ul-Haq</creator><creator>Imran, Muhammad</creator><creator>Haider, Noman</creator><creator>Shoaib, Muhammad</creator><creator>Razzak, Imran</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6946-2591</orcidid><orcidid>https://orcid.org/0000-0002-7099-0252</orcidid><orcidid>https://orcid.org/0000-0002-0051-6803</orcidid></search><sort><creationdate>202204</creationdate><title>An intelligent and efficient network intrusion detection system using deep learning</title><author>Qazi, Emad-ul-Haq ; Imran, Muhammad ; Haider, Noman ; Shoaib, Muhammad ; Razzak, Imran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-dd1a7b89db2c7fecfb11c5b736c16371e1119df385dc9c723b96e880919b451b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Auto-encoder</topic><topic>Coders</topic><topic>Communication networks</topic><topic>Deep learning</topic><topic>Intrusion detection</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Network security</topic><topic>Service introduction</topic><topic>SVM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qazi, Emad-ul-Haq</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Haider, Noman</creatorcontrib><creatorcontrib>Shoaib, Muhammad</creatorcontrib><creatorcontrib>Razzak, Imran</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qazi, Emad-ul-Haq</au><au>Imran, Muhammad</au><au>Haider, Noman</au><au>Shoaib, Muhammad</au><au>Razzak, Imran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent and efficient network intrusion detection system using deep learning</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2022-04</date><risdate>2022</risdate><volume>99</volume><spage>107764</spage><pages>107764-</pages><artnum>107764</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>•An intelligent and efficient network intrusion detection system based on deep learning is proposed.•A novel stacked Non-symmetric deep auto encoder is proposed for unsupervised feature learning.•A novel algorithm utilizes a stacked Non-symmetric deep auto encoder and support vector machine classifier for network intrusion detection. With continuously escalating threats and attacks, accurate and timely intrusion detection in communication networks is challenging. Many approaches have already been proposed recently on network intrusion detection. However, they face critical challenges due to the continuous increase of new threats that current systems do not understand. Motivated by the outstanding performance of deep learning (DL) in many detection and recognition tasks, we introduce an intelligent and efficient network intrusion detection system (NIDS) based on DL. This study proposes a non-symmetric deep auto-encoder for network intrusion detection problems and presents its detailed functionality and performance. We validate the robustness and effectiveness of the proposed NIDS using a benchmark dataset, i.e., KDD CUP'99. Our DL-based method is implemented in the TensorFlow library and GPU framework, and it achieves an accuracy of 99.65%. The proposed system can be used in network security research domains and DL-based detection and classification systems. [Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2022.107764</doi><orcidid>https://orcid.org/0000-0002-6946-2591</orcidid><orcidid>https://orcid.org/0000-0002-7099-0252</orcidid><orcidid>https://orcid.org/0000-0002-0051-6803</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2022-04, Vol.99, p.107764, Article 107764
issn 0045-7906
1879-0755
language eng
recordid cdi_proquest_journals_2652183985
source Elsevier ScienceDirect Journals
subjects Auto-encoder
Coders
Communication networks
Deep learning
Intrusion detection
Intrusion detection systems
Machine learning
Network security
Service introduction
SVM
title An intelligent and efficient network intrusion detection system using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20and%20efficient%20network%20intrusion%20detection%20system%20using%20deep%20learning&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Qazi,%20Emad-ul-Haq&rft.date=2022-04&rft.volume=99&rft.spage=107764&rft.pages=107764-&rft.artnum=107764&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2022.107764&rft_dat=%3Cproquest_cross%3E2652183985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652183985&rft_id=info:pmid/&rft_els_id=S0045790622000684&rfr_iscdi=true