Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach

Thermoacoustic instability phenomena often encounter in gas turbine combustors, especially for the premixed combustor design, with many possible detrimental results. As a classical experiment, the Rijke tube is the simplest and the most effective illustration to study the thermoacoustic instability....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2022, Vol.35 (2), p.586-603
Hauptverfasser: Zhao, Yuzhuo, Ma, Dan, Ma, Hongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue 2
container_start_page 586
container_title Journal of systems science and complexity
container_volume 35
creator Zhao, Yuzhuo
Ma, Dan
Ma, Hongwei
description Thermoacoustic instability phenomena often encounter in gas turbine combustors, especially for the premixed combustor design, with many possible detrimental results. As a classical experiment, the Rijke tube is the simplest and the most effective illustration to study the thermoacoustic instability. This paper investigates the active control approach of the thermoacoustic instability in a horizontal Rijke tube. What’s more, the radial basis function (RBF) neural network is adopted to estimate the complex unknown continuous nonlinear heat release rate in the Rijke tube. Then, based on the proposed second-order fully actuated system model, the authors present an adaptive neural network controller to guarantee the flow velocity fluctuation and pressure fluctuation to converge to a small region of the origin. Finally, simulation results demonstrate the feasibility of the design method.
doi_str_mv 10.1007/s11424-022-2048-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2652090638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652090638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161x-98ed8a67082059651ffa43082047fecf0cdef63c572353de08bc39ee780d04283</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhosoOKc_wLuA19WTtE1b78pwOhgKOq9Dlp64bv0ySXX997ZU8Mqr9xx4P-DxvGsKtxQgvrOUhiz0gTGfQZj4xxNvRqMo9WPg8elwA6Q-pyw89y6s3QMEPIVk5lVZLltXfCF5xs7IchD33ZgDWTS1M01JGk02OzRVI1XTWVcosqqtk9uiLFxPipq8FvsDkk23xXuSkWVXlj3JlOukw5y89dZhRbK2NUPB7tI707K0ePWrc-99-bBZPPnrl8fVIlv7inJ69NME80TyGBIGUcojqrUMg_ELY41Kg8pR80BFMQuiIEdItipIEeMEcghZEsy9m6l3mP3s0DqxbzpTD5OC8YhBCjwYXXRyKdNYa1CL1hSVNL2gIEaqYqIqBqpipCqOQ4ZNGTt46w80f83_h34AQXp65Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652090638</pqid></control><display><type>article</type><title>Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Yuzhuo ; Ma, Dan ; Ma, Hongwei</creator><creatorcontrib>Zhao, Yuzhuo ; Ma, Dan ; Ma, Hongwei</creatorcontrib><description>Thermoacoustic instability phenomena often encounter in gas turbine combustors, especially for the premixed combustor design, with many possible detrimental results. As a classical experiment, the Rijke tube is the simplest and the most effective illustration to study the thermoacoustic instability. This paper investigates the active control approach of the thermoacoustic instability in a horizontal Rijke tube. What’s more, the radial basis function (RBF) neural network is adopted to estimate the complex unknown continuous nonlinear heat release rate in the Rijke tube. Then, based on the proposed second-order fully actuated system model, the authors present an adaptive neural network controller to guarantee the flow velocity fluctuation and pressure fluctuation to converge to a small region of the origin. Finally, simulation results demonstrate the feasibility of the design method.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-022-2048-x</identifier><language>eng</language><publisher>Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences</publisher><subject>Active control ; Adaptive control ; Combustion chambers ; Complex Systems ; Control ; Flow velocity ; Gas turbines ; Heat release rate ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Network control ; Neural networks ; Operations Research/Decision Theory ; Radial basis function ; Statistics ; Systems Theory ; Thermoacoustics</subject><ispartof>Journal of systems science and complexity, 2022, Vol.35 (2), p.586-603</ispartof><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2022</rights><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c161x-98ed8a67082059651ffa43082047fecf0cdef63c572353de08bc39ee780d04283</citedby><cites>FETCH-LOGICAL-c161x-98ed8a67082059651ffa43082047fecf0cdef63c572353de08bc39ee780d04283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-022-2048-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-022-2048-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhao, Yuzhuo</creatorcontrib><creatorcontrib>Ma, Dan</creatorcontrib><creatorcontrib>Ma, Hongwei</creatorcontrib><title>Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>Thermoacoustic instability phenomena often encounter in gas turbine combustors, especially for the premixed combustor design, with many possible detrimental results. As a classical experiment, the Rijke tube is the simplest and the most effective illustration to study the thermoacoustic instability. This paper investigates the active control approach of the thermoacoustic instability in a horizontal Rijke tube. What’s more, the radial basis function (RBF) neural network is adopted to estimate the complex unknown continuous nonlinear heat release rate in the Rijke tube. Then, based on the proposed second-order fully actuated system model, the authors present an adaptive neural network controller to guarantee the flow velocity fluctuation and pressure fluctuation to converge to a small region of the origin. Finally, simulation results demonstrate the feasibility of the design method.</description><subject>Active control</subject><subject>Adaptive control</subject><subject>Combustion chambers</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Flow velocity</subject><subject>Gas turbines</subject><subject>Heat release rate</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Network control</subject><subject>Neural networks</subject><subject>Operations Research/Decision Theory</subject><subject>Radial basis function</subject><subject>Statistics</subject><subject>Systems Theory</subject><subject>Thermoacoustics</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhosoOKc_wLuA19WTtE1b78pwOhgKOq9Dlp64bv0ySXX997ZU8Mqr9xx4P-DxvGsKtxQgvrOUhiz0gTGfQZj4xxNvRqMo9WPg8elwA6Q-pyw89y6s3QMEPIVk5lVZLltXfCF5xs7IchD33ZgDWTS1M01JGk02OzRVI1XTWVcosqqtk9uiLFxPipq8FvsDkk23xXuSkWVXlj3JlOukw5y89dZhRbK2NUPB7tI707K0ePWrc-99-bBZPPnrl8fVIlv7inJ69NME80TyGBIGUcojqrUMg_ELY41Kg8pR80BFMQuiIEdItipIEeMEcghZEsy9m6l3mP3s0DqxbzpTD5OC8YhBCjwYXXRyKdNYa1CL1hSVNL2gIEaqYqIqBqpipCqOQ4ZNGTt46w80f83_h34AQXp65Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhao, Yuzhuo</creator><creator>Ma, Dan</creator><creator>Ma, Hongwei</creator><general>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach</title><author>Zhao, Yuzhuo ; Ma, Dan ; Ma, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161x-98ed8a67082059651ffa43082047fecf0cdef63c572353de08bc39ee780d04283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Adaptive control</topic><topic>Combustion chambers</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Flow velocity</topic><topic>Gas turbines</topic><topic>Heat release rate</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Network control</topic><topic>Neural networks</topic><topic>Operations Research/Decision Theory</topic><topic>Radial basis function</topic><topic>Statistics</topic><topic>Systems Theory</topic><topic>Thermoacoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuzhuo</creatorcontrib><creatorcontrib>Ma, Dan</creatorcontrib><creatorcontrib>Ma, Hongwei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuzhuo</au><au>Ma, Dan</au><au>Ma, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2022</date><risdate>2022</risdate><volume>35</volume><issue>2</issue><spage>586</spage><epage>603</epage><pages>586-603</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>Thermoacoustic instability phenomena often encounter in gas turbine combustors, especially for the premixed combustor design, with many possible detrimental results. As a classical experiment, the Rijke tube is the simplest and the most effective illustration to study the thermoacoustic instability. This paper investigates the active control approach of the thermoacoustic instability in a horizontal Rijke tube. What’s more, the radial basis function (RBF) neural network is adopted to estimate the complex unknown continuous nonlinear heat release rate in the Rijke tube. Then, based on the proposed second-order fully actuated system model, the authors present an adaptive neural network controller to guarantee the flow velocity fluctuation and pressure fluctuation to converge to a small region of the origin. Finally, simulation results demonstrate the feasibility of the design method.</abstract><cop>Beijing</cop><pub>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</pub><doi>10.1007/s11424-022-2048-x</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-6124
ispartof Journal of systems science and complexity, 2022, Vol.35 (2), p.586-603
issn 1009-6124
1559-7067
language eng
recordid cdi_proquest_journals_2652090638
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Active control
Adaptive control
Combustion chambers
Complex Systems
Control
Flow velocity
Gas turbines
Heat release rate
Mathematics
Mathematics and Statistics
Mathematics of Computing
Network control
Neural networks
Operations Research/Decision Theory
Radial basis function
Statistics
Systems Theory
Thermoacoustics
title Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Neural%20Network%20Control%20of%20Thermoacoustic%20Instability%20in%20Rijke%20Tube:%20A%20Fully%20Actuated%20System%20Approach&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Zhao,%20Yuzhuo&rft.date=2022&rft.volume=35&rft.issue=2&rft.spage=586&rft.epage=603&rft.pages=586-603&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-022-2048-x&rft_dat=%3Cproquest_cross%3E2652090638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652090638&rft_id=info:pmid/&rfr_iscdi=true