Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach
Thermoacoustic instability phenomena often encounter in gas turbine combustors, especially for the premixed combustor design, with many possible detrimental results. As a classical experiment, the Rijke tube is the simplest and the most effective illustration to study the thermoacoustic instability....
Gespeichert in:
Veröffentlicht in: | Journal of systems science and complexity 2022, Vol.35 (2), p.586-603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 2 |
container_start_page | 586 |
container_title | Journal of systems science and complexity |
container_volume | 35 |
creator | Zhao, Yuzhuo Ma, Dan Ma, Hongwei |
description | Thermoacoustic instability phenomena often encounter in gas turbine combustors, especially for the premixed combustor design, with many possible detrimental results. As a classical experiment, the Rijke tube is the simplest and the most effective illustration to study the thermoacoustic instability. This paper investigates the active control approach of the thermoacoustic instability in a horizontal Rijke tube. What’s more, the radial basis function (RBF) neural network is adopted to estimate the complex unknown continuous nonlinear heat release rate in the Rijke tube. Then, based on the proposed second-order fully actuated system model, the authors present an adaptive neural network controller to guarantee the flow velocity fluctuation and pressure fluctuation to converge to a small region of the origin. Finally, simulation results demonstrate the feasibility of the design method. |
doi_str_mv | 10.1007/s11424-022-2048-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2652090638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652090638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161x-98ed8a67082059651ffa43082047fecf0cdef63c572353de08bc39ee780d04283</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhosoOKc_wLuA19WTtE1b78pwOhgKOq9Dlp64bv0ySXX997ZU8Mqr9xx4P-DxvGsKtxQgvrOUhiz0gTGfQZj4xxNvRqMo9WPg8elwA6Q-pyw89y6s3QMEPIVk5lVZLltXfCF5xs7IchD33ZgDWTS1M01JGk02OzRVI1XTWVcosqqtk9uiLFxPipq8FvsDkk23xXuSkWVXlj3JlOukw5y89dZhRbK2NUPB7tI707K0ePWrc-99-bBZPPnrl8fVIlv7inJ69NME80TyGBIGUcojqrUMg_ELY41Kg8pR80BFMQuiIEdItipIEeMEcghZEsy9m6l3mP3s0DqxbzpTD5OC8YhBCjwYXXRyKdNYa1CL1hSVNL2gIEaqYqIqBqpipCqOQ4ZNGTt46w80f83_h34AQXp65Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652090638</pqid></control><display><type>article</type><title>Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Yuzhuo ; Ma, Dan ; Ma, Hongwei</creator><creatorcontrib>Zhao, Yuzhuo ; Ma, Dan ; Ma, Hongwei</creatorcontrib><description>Thermoacoustic instability phenomena often encounter in gas turbine combustors, especially for the premixed combustor design, with many possible detrimental results. As a classical experiment, the Rijke tube is the simplest and the most effective illustration to study the thermoacoustic instability. This paper investigates the active control approach of the thermoacoustic instability in a horizontal Rijke tube. What’s more, the radial basis function (RBF) neural network is adopted to estimate the complex unknown continuous nonlinear heat release rate in the Rijke tube. Then, based on the proposed second-order fully actuated system model, the authors present an adaptive neural network controller to guarantee the flow velocity fluctuation and pressure fluctuation to converge to a small region of the origin. Finally, simulation results demonstrate the feasibility of the design method.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-022-2048-x</identifier><language>eng</language><publisher>Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences</publisher><subject>Active control ; Adaptive control ; Combustion chambers ; Complex Systems ; Control ; Flow velocity ; Gas turbines ; Heat release rate ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Network control ; Neural networks ; Operations Research/Decision Theory ; Radial basis function ; Statistics ; Systems Theory ; Thermoacoustics</subject><ispartof>Journal of systems science and complexity, 2022, Vol.35 (2), p.586-603</ispartof><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2022</rights><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c161x-98ed8a67082059651ffa43082047fecf0cdef63c572353de08bc39ee780d04283</citedby><cites>FETCH-LOGICAL-c161x-98ed8a67082059651ffa43082047fecf0cdef63c572353de08bc39ee780d04283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-022-2048-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-022-2048-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhao, Yuzhuo</creatorcontrib><creatorcontrib>Ma, Dan</creatorcontrib><creatorcontrib>Ma, Hongwei</creatorcontrib><title>Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>Thermoacoustic instability phenomena often encounter in gas turbine combustors, especially for the premixed combustor design, with many possible detrimental results. As a classical experiment, the Rijke tube is the simplest and the most effective illustration to study the thermoacoustic instability. This paper investigates the active control approach of the thermoacoustic instability in a horizontal Rijke tube. What’s more, the radial basis function (RBF) neural network is adopted to estimate the complex unknown continuous nonlinear heat release rate in the Rijke tube. Then, based on the proposed second-order fully actuated system model, the authors present an adaptive neural network controller to guarantee the flow velocity fluctuation and pressure fluctuation to converge to a small region of the origin. Finally, simulation results demonstrate the feasibility of the design method.</description><subject>Active control</subject><subject>Adaptive control</subject><subject>Combustion chambers</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Flow velocity</subject><subject>Gas turbines</subject><subject>Heat release rate</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Network control</subject><subject>Neural networks</subject><subject>Operations Research/Decision Theory</subject><subject>Radial basis function</subject><subject>Statistics</subject><subject>Systems Theory</subject><subject>Thermoacoustics</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhosoOKc_wLuA19WTtE1b78pwOhgKOq9Dlp64bv0ySXX997ZU8Mqr9xx4P-DxvGsKtxQgvrOUhiz0gTGfQZj4xxNvRqMo9WPg8elwA6Q-pyw89y6s3QMEPIVk5lVZLltXfCF5xs7IchD33ZgDWTS1M01JGk02OzRVI1XTWVcosqqtk9uiLFxPipq8FvsDkk23xXuSkWVXlj3JlOukw5y89dZhRbK2NUPB7tI707K0ePWrc-99-bBZPPnrl8fVIlv7inJ69NME80TyGBIGUcojqrUMg_ELY41Kg8pR80BFMQuiIEdItipIEeMEcghZEsy9m6l3mP3s0DqxbzpTD5OC8YhBCjwYXXRyKdNYa1CL1hSVNL2gIEaqYqIqBqpipCqOQ4ZNGTt46w80f83_h34AQXp65Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhao, Yuzhuo</creator><creator>Ma, Dan</creator><creator>Ma, Hongwei</creator><general>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach</title><author>Zhao, Yuzhuo ; Ma, Dan ; Ma, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161x-98ed8a67082059651ffa43082047fecf0cdef63c572353de08bc39ee780d04283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Adaptive control</topic><topic>Combustion chambers</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Flow velocity</topic><topic>Gas turbines</topic><topic>Heat release rate</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Network control</topic><topic>Neural networks</topic><topic>Operations Research/Decision Theory</topic><topic>Radial basis function</topic><topic>Statistics</topic><topic>Systems Theory</topic><topic>Thermoacoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuzhuo</creatorcontrib><creatorcontrib>Ma, Dan</creatorcontrib><creatorcontrib>Ma, Hongwei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuzhuo</au><au>Ma, Dan</au><au>Ma, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2022</date><risdate>2022</risdate><volume>35</volume><issue>2</issue><spage>586</spage><epage>603</epage><pages>586-603</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>Thermoacoustic instability phenomena often encounter in gas turbine combustors, especially for the premixed combustor design, with many possible detrimental results. As a classical experiment, the Rijke tube is the simplest and the most effective illustration to study the thermoacoustic instability. This paper investigates the active control approach of the thermoacoustic instability in a horizontal Rijke tube. What’s more, the radial basis function (RBF) neural network is adopted to estimate the complex unknown continuous nonlinear heat release rate in the Rijke tube. Then, based on the proposed second-order fully actuated system model, the authors present an adaptive neural network controller to guarantee the flow velocity fluctuation and pressure fluctuation to converge to a small region of the origin. Finally, simulation results demonstrate the feasibility of the design method.</abstract><cop>Beijing</cop><pub>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</pub><doi>10.1007/s11424-022-2048-x</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2022, Vol.35 (2), p.586-603 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_proquest_journals_2652090638 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Active control Adaptive control Combustion chambers Complex Systems Control Flow velocity Gas turbines Heat release rate Mathematics Mathematics and Statistics Mathematics of Computing Network control Neural networks Operations Research/Decision Theory Radial basis function Statistics Systems Theory Thermoacoustics |
title | Adaptive Neural Network Control of Thermoacoustic Instability in Rijke Tube: A Fully Actuated System Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Neural%20Network%20Control%20of%20Thermoacoustic%20Instability%20in%20Rijke%20Tube:%20A%20Fully%20Actuated%20System%20Approach&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Zhao,%20Yuzhuo&rft.date=2022&rft.volume=35&rft.issue=2&rft.spage=586&rft.epage=603&rft.pages=586-603&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-022-2048-x&rft_dat=%3Cproquest_cross%3E2652090638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652090638&rft_id=info:pmid/&rfr_iscdi=true |