Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls
We consider the differential game with ‘‘Life line’’ of R. Isaacs that occupies a special place as an example of differential game with phase constraint. In the present paper, the problem of one pursuer and one evader is studied, in which case controls of players are subjected to non-stationary geom...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2022, Vol.43 (1), p.237-248 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | 1 |
container_start_page | 237 |
container_title | Lobachevskii journal of mathematics |
container_volume | 43 |
creator | Samatov, B. T. Horilov, M. A. Akbarov, A. Ah |
description | We consider the differential game with ‘‘Life line’’ of R. Isaacs that occupies a special place as an example of differential game with phase constraint. In the present paper, the problem of one pursuer and one evader is studied, in which case controls of players are subjected to non-stationary geometric constraints of different types. The notion of strategy of parallel pursuit (briefly
-strategy) was introduced and used to solve the quality problem for ‘‘The game with a life line’’ by L. A. Petrosjan. Dynamics of changing of the attainability domains of the players is studied by the properties of theory of multi-valued mapping and a simple proof of the main lemma is given. This work develops and extends the works of Isaacs, Petrosjan, Pshenichnyi, Azamov and other researchers, including the authors. |
doi_str_mv | 10.1134/S1995080222040187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2652090623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652090623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-6b0de8b8dca76a1638208cdc968291fd9eb291d39dbd45676579db11385115b63</originalsourceid><addsrcrecordid>eNp1UMFKAzEQDaJgrX6At4Dn1SS7O5t4k6pVWOyhepQlu5tISpvUJD1462fo7_VLTFnBgwgDb4Z57w3zEDqn5JLSvLiaUyFKwgljjBSE8uoAjSinPBMC2GHq0zrb74_RSQgLkogAMEKvt0Zr5ZWNRi7xVK7UNd5tP1PVRitcG6t2269UWDuPn5zN5lFG46z0H3iq3EpFbzo8cTZEL42NAc_sfozeLcMpOtJyGdTZD47Ry_3d8-Qhq2fTx8lNnXWsgJhBS3rFW953sgJJIeeM8K7vBHAmqO6FahP2uejbviihgrJKbfqbl5SWLeRjdDH4rr1736gQm4XbeJtONgxKRgQBlicWHViddyF4pZu1N6v0SENJs0-x-ZNi0rBBExLXvin_6_y_6BsIz3aJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652090623</pqid></control><display><type>article</type><title>Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls</title><source>SpringerLink Journals - AutoHoldings</source><creator>Samatov, B. T. ; Horilov, M. A. ; Akbarov, A. Ah</creator><creatorcontrib>Samatov, B. T. ; Horilov, M. A. ; Akbarov, A. Ah</creatorcontrib><description>We consider the differential game with ‘‘Life line’’ of R. Isaacs that occupies a special place as an example of differential game with phase constraint. In the present paper, the problem of one pursuer and one evader is studied, in which case controls of players are subjected to non-stationary geometric constraints of different types. The notion of strategy of parallel pursuit (briefly
-strategy) was introduced and used to solve the quality problem for ‘‘The game with a life line’’ by L. A. Petrosjan. Dynamics of changing of the attainability domains of the players is studied by the properties of theory of multi-valued mapping and a simple proof of the main lemma is given. This work develops and extends the works of Isaacs, Petrosjan, Pshenichnyi, Azamov and other researchers, including the authors.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222040187</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Differential games ; Differential geometry ; Geometric constraints ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Players ; Probability Theory and Stochastic Processes ; Strategy</subject><ispartof>Lobachevskii journal of mathematics, 2022, Vol.43 (1), p.237-248</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-6b0de8b8dca76a1638208cdc968291fd9eb291d39dbd45676579db11385115b63</citedby><cites>FETCH-LOGICAL-c246t-6b0de8b8dca76a1638208cdc968291fd9eb291d39dbd45676579db11385115b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080222040187$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080222040187$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Samatov, B. T.</creatorcontrib><creatorcontrib>Horilov, M. A.</creatorcontrib><creatorcontrib>Akbarov, A. Ah</creatorcontrib><title>Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We consider the differential game with ‘‘Life line’’ of R. Isaacs that occupies a special place as an example of differential game with phase constraint. In the present paper, the problem of one pursuer and one evader is studied, in which case controls of players are subjected to non-stationary geometric constraints of different types. The notion of strategy of parallel pursuit (briefly
-strategy) was introduced and used to solve the quality problem for ‘‘The game with a life line’’ by L. A. Petrosjan. Dynamics of changing of the attainability domains of the players is studied by the properties of theory of multi-valued mapping and a simple proof of the main lemma is given. This work develops and extends the works of Isaacs, Petrosjan, Pshenichnyi, Azamov and other researchers, including the authors.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Differential games</subject><subject>Differential geometry</subject><subject>Geometric constraints</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Players</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Strategy</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKAzEQDaJgrX6At4Dn1SS7O5t4k6pVWOyhepQlu5tISpvUJD1462fo7_VLTFnBgwgDb4Z57w3zEDqn5JLSvLiaUyFKwgljjBSE8uoAjSinPBMC2GHq0zrb74_RSQgLkogAMEKvt0Zr5ZWNRi7xVK7UNd5tP1PVRitcG6t2269UWDuPn5zN5lFG46z0H3iq3EpFbzo8cTZEL42NAc_sfozeLcMpOtJyGdTZD47Ry_3d8-Qhq2fTx8lNnXWsgJhBS3rFW953sgJJIeeM8K7vBHAmqO6FahP2uejbviihgrJKbfqbl5SWLeRjdDH4rr1736gQm4XbeJtONgxKRgQBlicWHViddyF4pZu1N6v0SENJs0-x-ZNi0rBBExLXvin_6_y_6BsIz3aJ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Samatov, B. T.</creator><creator>Horilov, M. A.</creator><creator>Akbarov, A. Ah</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls</title><author>Samatov, B. T. ; Horilov, M. A. ; Akbarov, A. Ah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-6b0de8b8dca76a1638208cdc968291fd9eb291d39dbd45676579db11385115b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Differential games</topic><topic>Differential geometry</topic><topic>Geometric constraints</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Players</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samatov, B. T.</creatorcontrib><creatorcontrib>Horilov, M. A.</creatorcontrib><creatorcontrib>Akbarov, A. Ah</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samatov, B. T.</au><au>Horilov, M. A.</au><au>Akbarov, A. Ah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2022</date><risdate>2022</risdate><volume>43</volume><issue>1</issue><spage>237</spage><epage>248</epage><pages>237-248</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We consider the differential game with ‘‘Life line’’ of R. Isaacs that occupies a special place as an example of differential game with phase constraint. In the present paper, the problem of one pursuer and one evader is studied, in which case controls of players are subjected to non-stationary geometric constraints of different types. The notion of strategy of parallel pursuit (briefly
-strategy) was introduced and used to solve the quality problem for ‘‘The game with a life line’’ by L. A. Petrosjan. Dynamics of changing of the attainability domains of the players is studied by the properties of theory of multi-valued mapping and a simple proof of the main lemma is given. This work develops and extends the works of Isaacs, Petrosjan, Pshenichnyi, Azamov and other researchers, including the authors.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222040187</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2022, Vol.43 (1), p.237-248 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2652090623 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Differential games Differential geometry Geometric constraints Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Players Probability Theory and Stochastic Processes Strategy |
title | Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Game:%20%E2%80%98%E2%80%98Life%20Line%E2%80%99%E2%80%99%20for%20Non-Stationary%20Geometric%20Constraints%20On%20Controls&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Samatov,%20B.%20T.&rft.date=2022&rft.volume=43&rft.issue=1&rft.spage=237&rft.epage=248&rft.pages=237-248&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222040187&rft_dat=%3Cproquest_cross%3E2652090623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652090623&rft_id=info:pmid/&rfr_iscdi=true |