Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls

We consider the differential game with ‘‘Life line’’ of R. Isaacs that occupies a special place as an example of differential game with phase constraint. In the present paper, the problem of one pursuer and one evader is studied, in which case controls of players are subjected to non-stationary geom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2022, Vol.43 (1), p.237-248
Hauptverfasser: Samatov, B. T., Horilov, M. A., Akbarov, A. Ah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue 1
container_start_page 237
container_title Lobachevskii journal of mathematics
container_volume 43
creator Samatov, B. T.
Horilov, M. A.
Akbarov, A. Ah
description We consider the differential game with ‘‘Life line’’ of R. Isaacs that occupies a special place as an example of differential game with phase constraint. In the present paper, the problem of one pursuer and one evader is studied, in which case controls of players are subjected to non-stationary geometric constraints of different types. The notion of strategy of parallel pursuit (briefly -strategy) was introduced and used to solve the quality problem for ‘‘The game with a life line’’ by L. A. Petrosjan. Dynamics of changing of the attainability domains of the players is studied by the properties of theory of multi-valued mapping and a simple proof of the main lemma is given. This work develops and extends the works of Isaacs, Petrosjan, Pshenichnyi, Azamov and other researchers, including the authors.
doi_str_mv 10.1134/S1995080222040187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2652090623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652090623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-6b0de8b8dca76a1638208cdc968291fd9eb291d39dbd45676579db11385115b63</originalsourceid><addsrcrecordid>eNp1UMFKAzEQDaJgrX6At4Dn1SS7O5t4k6pVWOyhepQlu5tISpvUJD1462fo7_VLTFnBgwgDb4Z57w3zEDqn5JLSvLiaUyFKwgljjBSE8uoAjSinPBMC2GHq0zrb74_RSQgLkogAMEKvt0Zr5ZWNRi7xVK7UNd5tP1PVRitcG6t2269UWDuPn5zN5lFG46z0H3iq3EpFbzo8cTZEL42NAc_sfozeLcMpOtJyGdTZD47Ry_3d8-Qhq2fTx8lNnXWsgJhBS3rFW953sgJJIeeM8K7vBHAmqO6FahP2uejbviihgrJKbfqbl5SWLeRjdDH4rr1736gQm4XbeJtONgxKRgQBlicWHViddyF4pZu1N6v0SENJs0-x-ZNi0rBBExLXvin_6_y_6BsIz3aJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652090623</pqid></control><display><type>article</type><title>Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls</title><source>SpringerLink Journals - AutoHoldings</source><creator>Samatov, B. T. ; Horilov, M. A. ; Akbarov, A. Ah</creator><creatorcontrib>Samatov, B. T. ; Horilov, M. A. ; Akbarov, A. Ah</creatorcontrib><description>We consider the differential game with ‘‘Life line’’ of R. Isaacs that occupies a special place as an example of differential game with phase constraint. In the present paper, the problem of one pursuer and one evader is studied, in which case controls of players are subjected to non-stationary geometric constraints of different types. The notion of strategy of parallel pursuit (briefly -strategy) was introduced and used to solve the quality problem for ‘‘The game with a life line’’ by L. A. Petrosjan. Dynamics of changing of the attainability domains of the players is studied by the properties of theory of multi-valued mapping and a simple proof of the main lemma is given. This work develops and extends the works of Isaacs, Petrosjan, Pshenichnyi, Azamov and other researchers, including the authors.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222040187</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Differential games ; Differential geometry ; Geometric constraints ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Players ; Probability Theory and Stochastic Processes ; Strategy</subject><ispartof>Lobachevskii journal of mathematics, 2022, Vol.43 (1), p.237-248</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-6b0de8b8dca76a1638208cdc968291fd9eb291d39dbd45676579db11385115b63</citedby><cites>FETCH-LOGICAL-c246t-6b0de8b8dca76a1638208cdc968291fd9eb291d39dbd45676579db11385115b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080222040187$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080222040187$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Samatov, B. T.</creatorcontrib><creatorcontrib>Horilov, M. A.</creatorcontrib><creatorcontrib>Akbarov, A. Ah</creatorcontrib><title>Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We consider the differential game with ‘‘Life line’’ of R. Isaacs that occupies a special place as an example of differential game with phase constraint. In the present paper, the problem of one pursuer and one evader is studied, in which case controls of players are subjected to non-stationary geometric constraints of different types. The notion of strategy of parallel pursuit (briefly -strategy) was introduced and used to solve the quality problem for ‘‘The game with a life line’’ by L. A. Petrosjan. Dynamics of changing of the attainability domains of the players is studied by the properties of theory of multi-valued mapping and a simple proof of the main lemma is given. This work develops and extends the works of Isaacs, Petrosjan, Pshenichnyi, Azamov and other researchers, including the authors.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Differential games</subject><subject>Differential geometry</subject><subject>Geometric constraints</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Players</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Strategy</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKAzEQDaJgrX6At4Dn1SS7O5t4k6pVWOyhepQlu5tISpvUJD1462fo7_VLTFnBgwgDb4Z57w3zEDqn5JLSvLiaUyFKwgljjBSE8uoAjSinPBMC2GHq0zrb74_RSQgLkogAMEKvt0Zr5ZWNRi7xVK7UNd5tP1PVRitcG6t2269UWDuPn5zN5lFG46z0H3iq3EpFbzo8cTZEL42NAc_sfozeLcMpOtJyGdTZD47Ry_3d8-Qhq2fTx8lNnXWsgJhBS3rFW953sgJJIeeM8K7vBHAmqO6FahP2uejbviihgrJKbfqbl5SWLeRjdDH4rr1736gQm4XbeJtONgxKRgQBlicWHViddyF4pZu1N6v0SENJs0-x-ZNi0rBBExLXvin_6_y_6BsIz3aJ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Samatov, B. T.</creator><creator>Horilov, M. A.</creator><creator>Akbarov, A. Ah</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls</title><author>Samatov, B. T. ; Horilov, M. A. ; Akbarov, A. Ah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-6b0de8b8dca76a1638208cdc968291fd9eb291d39dbd45676579db11385115b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Differential games</topic><topic>Differential geometry</topic><topic>Geometric constraints</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Players</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samatov, B. T.</creatorcontrib><creatorcontrib>Horilov, M. A.</creatorcontrib><creatorcontrib>Akbarov, A. Ah</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samatov, B. T.</au><au>Horilov, M. A.</au><au>Akbarov, A. Ah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2022</date><risdate>2022</risdate><volume>43</volume><issue>1</issue><spage>237</spage><epage>248</epage><pages>237-248</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We consider the differential game with ‘‘Life line’’ of R. Isaacs that occupies a special place as an example of differential game with phase constraint. In the present paper, the problem of one pursuer and one evader is studied, in which case controls of players are subjected to non-stationary geometric constraints of different types. The notion of strategy of parallel pursuit (briefly -strategy) was introduced and used to solve the quality problem for ‘‘The game with a life line’’ by L. A. Petrosjan. Dynamics of changing of the attainability domains of the players is studied by the properties of theory of multi-valued mapping and a simple proof of the main lemma is given. This work develops and extends the works of Isaacs, Petrosjan, Pshenichnyi, Azamov and other researchers, including the authors.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222040187</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2022, Vol.43 (1), p.237-248
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2652090623
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Differential games
Differential geometry
Geometric constraints
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Players
Probability Theory and Stochastic Processes
Strategy
title Differential Game: ‘‘Life Line’’ for Non-Stationary Geometric Constraints On Controls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Game:%20%E2%80%98%E2%80%98Life%20Line%E2%80%99%E2%80%99%20for%20Non-Stationary%20Geometric%20Constraints%20On%20Controls&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Samatov,%20B.%20T.&rft.date=2022&rft.volume=43&rft.issue=1&rft.spage=237&rft.epage=248&rft.pages=237-248&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222040187&rft_dat=%3Cproquest_cross%3E2652090623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652090623&rft_id=info:pmid/&rfr_iscdi=true