Machine Learning–Based Seismic Reliability Assessment of Bridge Networks

AbstractTransportation networks are critical components of lifeline systems. They can experience disruptions due to seismic hazards that could lead to severe emergency response and recovery problems. Finding an efficient and effective method to evaluate the seismic reliability of bridge networks is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 2022-07, Vol.148 (7)
Hauptverfasser: Chen, Mengdie, Mangalathu, Sujith, Jeon, Jong-Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of structural engineering (New York, N.Y.)
container_volume 148
creator Chen, Mengdie
Mangalathu, Sujith
Jeon, Jong-Su
description AbstractTransportation networks are critical components of lifeline systems. They can experience disruptions due to seismic hazards that could lead to severe emergency response and recovery problems. Finding an efficient and effective method to evaluate the seismic reliability of bridge networks is crucial for risk managers. This study proposes a method that can compute the seismic reliability of bridge networks using machine learning techniques. The proposed method is computationally less expensive than existing methods and can be implemented easily in emergency risk management systems. Moreover, it includes information on ranking bridges and prioritizing retrofit plans.
doi_str_mv 10.1061/(ASCE)ST.1943-541X.0003376
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651953033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651953033</sourcerecordid><originalsourceid>FETCH-LOGICAL-a267t-a8a7d9e875bb0ffca6ecf6c4541b49b9545fb8949b8b6fcc53f55f8a976235263</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqVwhwg2sEiw49iJ2bVV-VMBiRSJneW44-LSJsVOhbrjDtyQk5CoBVasZjT63szoIXRMcEQwJ-envXwwPMvHEREJDVlCniOMMaUp30Gd39ku6uCU0lAkCdtHB97PmlDKSNZBt3dKv9gSghEoV9py-vXx2VceJkEO1i-sDh5hblVh57ZeBz3vwfsFlHVQmaDv7GQKwT3U75V79Ydoz6i5h6Nt7aKny-F4cB2OHq5uBr1RqGKe1qHKVDoRkKWsKLAxWnHQhuukebRIRCFYwkyRiabNCm60ZtQwZjIlUh5TFnPaRSebvUtXva3A13JWrVzZnJQxZ0Qw2ghoUheblHaV9w6MXDq7UG4tCZatOylbdzIfy9aTbD3JrbsG5htYeQ1_63_I_8Fvip50zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651953033</pqid></control><display><type>article</type><title>Machine Learning–Based Seismic Reliability Assessment of Bridge Networks</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Chen, Mengdie ; Mangalathu, Sujith ; Jeon, Jong-Su</creator><creatorcontrib>Chen, Mengdie ; Mangalathu, Sujith ; Jeon, Jong-Su</creatorcontrib><description>AbstractTransportation networks are critical components of lifeline systems. They can experience disruptions due to seismic hazards that could lead to severe emergency response and recovery problems. Finding an efficient and effective method to evaluate the seismic reliability of bridge networks is crucial for risk managers. This study proposes a method that can compute the seismic reliability of bridge networks using machine learning techniques. The proposed method is computationally less expensive than existing methods and can be implemented easily in emergency risk management systems. Moreover, it includes information on ranking bridges and prioritizing retrofit plans.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)ST.1943-541X.0003376</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Component reliability ; Critical components ; Emergency management ; Emergency response ; Machine learning ; Management systems ; Network reliability ; Reliability analysis ; Retrofitting ; Risk management ; Seismic hazard ; Structural engineering ; Technical Note ; Technical Notes ; Transportation networks</subject><ispartof>Journal of structural engineering (New York, N.Y.), 2022-07, Vol.148 (7)</ispartof><rights>2022 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a267t-a8a7d9e875bb0ffca6ecf6c4541b49b9545fb8949b8b6fcc53f55f8a976235263</citedby><cites>FETCH-LOGICAL-a267t-a8a7d9e875bb0ffca6ecf6c4541b49b9545fb8949b8b6fcc53f55f8a976235263</cites><orcidid>0000-0001-6657-7265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)ST.1943-541X.0003376$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0003376$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75935,75943</link.rule.ids></links><search><creatorcontrib>Chen, Mengdie</creatorcontrib><creatorcontrib>Mangalathu, Sujith</creatorcontrib><creatorcontrib>Jeon, Jong-Su</creatorcontrib><title>Machine Learning–Based Seismic Reliability Assessment of Bridge Networks</title><title>Journal of structural engineering (New York, N.Y.)</title><description>AbstractTransportation networks are critical components of lifeline systems. They can experience disruptions due to seismic hazards that could lead to severe emergency response and recovery problems. Finding an efficient and effective method to evaluate the seismic reliability of bridge networks is crucial for risk managers. This study proposes a method that can compute the seismic reliability of bridge networks using machine learning techniques. The proposed method is computationally less expensive than existing methods and can be implemented easily in emergency risk management systems. Moreover, it includes information on ranking bridges and prioritizing retrofit plans.</description><subject>Component reliability</subject><subject>Critical components</subject><subject>Emergency management</subject><subject>Emergency response</subject><subject>Machine learning</subject><subject>Management systems</subject><subject>Network reliability</subject><subject>Reliability analysis</subject><subject>Retrofitting</subject><subject>Risk management</subject><subject>Seismic hazard</subject><subject>Structural engineering</subject><subject>Technical Note</subject><subject>Technical Notes</subject><subject>Transportation networks</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqVwhwg2sEiw49iJ2bVV-VMBiRSJneW44-LSJsVOhbrjDtyQk5CoBVasZjT63szoIXRMcEQwJ-envXwwPMvHEREJDVlCniOMMaUp30Gd39ku6uCU0lAkCdtHB97PmlDKSNZBt3dKv9gSghEoV9py-vXx2VceJkEO1i-sDh5hblVh57ZeBz3vwfsFlHVQmaDv7GQKwT3U75V79Ydoz6i5h6Nt7aKny-F4cB2OHq5uBr1RqGKe1qHKVDoRkKWsKLAxWnHQhuukebRIRCFYwkyRiabNCm60ZtQwZjIlUh5TFnPaRSebvUtXva3A13JWrVzZnJQxZ0Qw2ghoUheblHaV9w6MXDq7UG4tCZatOylbdzIfy9aTbD3JrbsG5htYeQ1_63_I_8Fvip50zg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Chen, Mengdie</creator><creator>Mangalathu, Sujith</creator><creator>Jeon, Jong-Su</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6657-7265</orcidid></search><sort><creationdate>20220701</creationdate><title>Machine Learning–Based Seismic Reliability Assessment of Bridge Networks</title><author>Chen, Mengdie ; Mangalathu, Sujith ; Jeon, Jong-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a267t-a8a7d9e875bb0ffca6ecf6c4541b49b9545fb8949b8b6fcc53f55f8a976235263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Component reliability</topic><topic>Critical components</topic><topic>Emergency management</topic><topic>Emergency response</topic><topic>Machine learning</topic><topic>Management systems</topic><topic>Network reliability</topic><topic>Reliability analysis</topic><topic>Retrofitting</topic><topic>Risk management</topic><topic>Seismic hazard</topic><topic>Structural engineering</topic><topic>Technical Note</topic><topic>Technical Notes</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mengdie</creatorcontrib><creatorcontrib>Mangalathu, Sujith</creatorcontrib><creatorcontrib>Jeon, Jong-Su</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mengdie</au><au>Mangalathu, Sujith</au><au>Jeon, Jong-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning–Based Seismic Reliability Assessment of Bridge Networks</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>148</volume><issue>7</issue><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>AbstractTransportation networks are critical components of lifeline systems. They can experience disruptions due to seismic hazards that could lead to severe emergency response and recovery problems. Finding an efficient and effective method to evaluate the seismic reliability of bridge networks is crucial for risk managers. This study proposes a method that can compute the seismic reliability of bridge networks using machine learning techniques. The proposed method is computationally less expensive than existing methods and can be implemented easily in emergency risk management systems. Moreover, it includes information on ranking bridges and prioritizing retrofit plans.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)ST.1943-541X.0003376</doi><orcidid>https://orcid.org/0000-0001-6657-7265</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-9445
ispartof Journal of structural engineering (New York, N.Y.), 2022-07, Vol.148 (7)
issn 0733-9445
1943-541X
language eng
recordid cdi_proquest_journals_2651953033
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Component reliability
Critical components
Emergency management
Emergency response
Machine learning
Management systems
Network reliability
Reliability analysis
Retrofitting
Risk management
Seismic hazard
Structural engineering
Technical Note
Technical Notes
Transportation networks
title Machine Learning–Based Seismic Reliability Assessment of Bridge Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%E2%80%93Based%20Seismic%20Reliability%20Assessment%20of%20Bridge%20Networks&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Chen,%20Mengdie&rft.date=2022-07-01&rft.volume=148&rft.issue=7&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)ST.1943-541X.0003376&rft_dat=%3Cproquest_cross%3E2651953033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651953033&rft_id=info:pmid/&rfr_iscdi=true