Resolvent Analysis of an Under-expanded Planar Supersonic Impinging Jet

This investigation aims to assess the effect of different types of actuator forcing on the feedback loop of an under-expanded Mach 1.27 planar impinging jet using a resolvent framework. To this end, we employ a Large Eddy Simulation database as a truth model. The time and spanwise-averaged mean flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Liu, Qiong, Prasad, Chitrarth, Gaitonde, Datta V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Qiong
Prasad, Chitrarth
Gaitonde, Datta V
description This investigation aims to assess the effect of different types of actuator forcing on the feedback loop of an under-expanded Mach 1.27 planar impinging jet using a resolvent framework. To this end, we employ a Large Eddy Simulation database as a truth model. The time and spanwise-averaged mean flow is taken as an input to global stability and resolvent analyses with the purpose of examining both the intrinsic instability and input-output characteristics. The results show that the inherent instability and primary energy amplification are attributed to the Kelvin-Helmholtz (K-H) instability. Moreover, the K-H response modes obtained from the resolvent analysis are in reasonable agreement with Spectral Proper Orthogonal Decomposition (SPOD) modes from the unsteady LES data. Insights into noise control are obtained by localizing the actuator forcing to the nozzle lip and the ground plate by imposing component-wise forcing to mimic different notional actuators. It is observed that energy amplification obtained for the localized component-wise forcing is different from the global resolvent analysis and dependent on the type of actuator. This provides insights into the type, wavenumber, and frequency of actuators for active flow control.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2651902171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651902171</sourcerecordid><originalsourceid>FETCH-proquest_journals_26519021713</originalsourceid><addsrcrecordid>eNqNjckKwjAURYMgWLT_8MB1IYNtdSniuBKHdQn2VVpiEvNa0b-3Cz9AuHDO4sAdsEgqJZL5TMoRi4kazrnMcpmmKmLbE5IzL7QtLK02H6oJXAXawtWWGBJ8e91LCUejrQ5w7jwGcra-wf7ha3vvBwdsJ2xYaUMY_zhm0836stolPrhnh9QWjetC_0CFzFKx4FLkQv1XfQH2DDt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651902171</pqid></control><display><type>article</type><title>Resolvent Analysis of an Under-expanded Planar Supersonic Impinging Jet</title><source>Free E- Journals</source><creator>Liu, Qiong ; Prasad, Chitrarth ; Gaitonde, Datta V</creator><creatorcontrib>Liu, Qiong ; Prasad, Chitrarth ; Gaitonde, Datta V</creatorcontrib><description>This investigation aims to assess the effect of different types of actuator forcing on the feedback loop of an under-expanded Mach 1.27 planar impinging jet using a resolvent framework. To this end, we employ a Large Eddy Simulation database as a truth model. The time and spanwise-averaged mean flow is taken as an input to global stability and resolvent analyses with the purpose of examining both the intrinsic instability and input-output characteristics. The results show that the inherent instability and primary energy amplification are attributed to the Kelvin-Helmholtz (K-H) instability. Moreover, the K-H response modes obtained from the resolvent analysis are in reasonable agreement with Spectral Proper Orthogonal Decomposition (SPOD) modes from the unsteady LES data. Insights into noise control are obtained by localizing the actuator forcing to the nozzle lip and the ground plate by imposing component-wise forcing to mimic different notional actuators. It is observed that energy amplification obtained for the localized component-wise forcing is different from the global resolvent analysis and dependent on the type of actuator. This provides insights into the type, wavenumber, and frequency of actuators for active flow control.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Active noise control ; Actuators ; Amplification ; Control theory ; Feedback loops ; Flow control ; Flow stability ; Jet impingement ; Large eddy simulation ; Noise control ; Proper Orthogonal Decomposition ; Stability ; Stability analysis ; Wavelengths</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liu, Qiong</creatorcontrib><creatorcontrib>Prasad, Chitrarth</creatorcontrib><creatorcontrib>Gaitonde, Datta V</creatorcontrib><title>Resolvent Analysis of an Under-expanded Planar Supersonic Impinging Jet</title><title>arXiv.org</title><description>This investigation aims to assess the effect of different types of actuator forcing on the feedback loop of an under-expanded Mach 1.27 planar impinging jet using a resolvent framework. To this end, we employ a Large Eddy Simulation database as a truth model. The time and spanwise-averaged mean flow is taken as an input to global stability and resolvent analyses with the purpose of examining both the intrinsic instability and input-output characteristics. The results show that the inherent instability and primary energy amplification are attributed to the Kelvin-Helmholtz (K-H) instability. Moreover, the K-H response modes obtained from the resolvent analysis are in reasonable agreement with Spectral Proper Orthogonal Decomposition (SPOD) modes from the unsteady LES data. Insights into noise control are obtained by localizing the actuator forcing to the nozzle lip and the ground plate by imposing component-wise forcing to mimic different notional actuators. It is observed that energy amplification obtained for the localized component-wise forcing is different from the global resolvent analysis and dependent on the type of actuator. This provides insights into the type, wavenumber, and frequency of actuators for active flow control.</description><subject>Active noise control</subject><subject>Actuators</subject><subject>Amplification</subject><subject>Control theory</subject><subject>Feedback loops</subject><subject>Flow control</subject><subject>Flow stability</subject><subject>Jet impingement</subject><subject>Large eddy simulation</subject><subject>Noise control</subject><subject>Proper Orthogonal Decomposition</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Wavelengths</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjckKwjAURYMgWLT_8MB1IYNtdSniuBKHdQn2VVpiEvNa0b-3Cz9AuHDO4sAdsEgqJZL5TMoRi4kazrnMcpmmKmLbE5IzL7QtLK02H6oJXAXawtWWGBJ8e91LCUejrQ5w7jwGcra-wf7ha3vvBwdsJ2xYaUMY_zhm0836stolPrhnh9QWjetC_0CFzFKx4FLkQv1XfQH2DDt8</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Liu, Qiong</creator><creator>Prasad, Chitrarth</creator><creator>Gaitonde, Datta V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220415</creationdate><title>Resolvent Analysis of an Under-expanded Planar Supersonic Impinging Jet</title><author>Liu, Qiong ; Prasad, Chitrarth ; Gaitonde, Datta V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26519021713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active noise control</topic><topic>Actuators</topic><topic>Amplification</topic><topic>Control theory</topic><topic>Feedback loops</topic><topic>Flow control</topic><topic>Flow stability</topic><topic>Jet impingement</topic><topic>Large eddy simulation</topic><topic>Noise control</topic><topic>Proper Orthogonal Decomposition</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Wavelengths</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiong</creatorcontrib><creatorcontrib>Prasad, Chitrarth</creatorcontrib><creatorcontrib>Gaitonde, Datta V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiong</au><au>Prasad, Chitrarth</au><au>Gaitonde, Datta V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Resolvent Analysis of an Under-expanded Planar Supersonic Impinging Jet</atitle><jtitle>arXiv.org</jtitle><date>2022-04-15</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This investigation aims to assess the effect of different types of actuator forcing on the feedback loop of an under-expanded Mach 1.27 planar impinging jet using a resolvent framework. To this end, we employ a Large Eddy Simulation database as a truth model. The time and spanwise-averaged mean flow is taken as an input to global stability and resolvent analyses with the purpose of examining both the intrinsic instability and input-output characteristics. The results show that the inherent instability and primary energy amplification are attributed to the Kelvin-Helmholtz (K-H) instability. Moreover, the K-H response modes obtained from the resolvent analysis are in reasonable agreement with Spectral Proper Orthogonal Decomposition (SPOD) modes from the unsteady LES data. Insights into noise control are obtained by localizing the actuator forcing to the nozzle lip and the ground plate by imposing component-wise forcing to mimic different notional actuators. It is observed that energy amplification obtained for the localized component-wise forcing is different from the global resolvent analysis and dependent on the type of actuator. This provides insights into the type, wavenumber, and frequency of actuators for active flow control.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2651902171
source Free E- Journals
subjects Active noise control
Actuators
Amplification
Control theory
Feedback loops
Flow control
Flow stability
Jet impingement
Large eddy simulation
Noise control
Proper Orthogonal Decomposition
Stability
Stability analysis
Wavelengths
title Resolvent Analysis of an Under-expanded Planar Supersonic Impinging Jet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A22%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Resolvent%20Analysis%20of%20an%20Under-expanded%20Planar%20Supersonic%20Impinging%20Jet&rft.jtitle=arXiv.org&rft.au=Liu,%20Qiong&rft.date=2022-04-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2651902171%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651902171&rft_id=info:pmid/&rfr_iscdi=true