Super durable graphene aerogel inspired by deep-sea glass sponge skeleton
Herein, a facile hydrothermal self-assembling strategy is employed to prepare a reduced graphene oxide (rGO) aerogel with a multi-scale hierarchical cellular structure inspired by deep-sea glass sponge. This hierarchical cellular structure of the rGO aerogel, obtained by changing the carbon wall to...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2022-05, Vol.191, p.153-163 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | |
container_start_page | 153 |
container_title | Carbon (New York) |
container_volume | 191 |
creator | Luo, Rong Li, Zhangpeng Wu, Xianzhang Liu, Hong Ma, Limin Wu, Jianyu Qin, Ganlin Wang, Jinqing Yang, Shengrong |
description | Herein, a facile hydrothermal self-assembling strategy is employed to prepare a reduced graphene oxide (rGO) aerogel with a multi-scale hierarchical cellular structure inspired by deep-sea glass sponge. This hierarchical cellular structure of the rGO aerogel, obtained by changing the carbon wall to cellular structure, can be broken down into six levels from the nano- to the macro-scale. Remarkably, the rGO aerogel, with multi-step reductions, shows significant flexibility and toughness under extra-high compressions: 99.9% of the original height is remained after 20 000 compression cycles at a high strain of 90%, whereas 79.8% of height is still preserved after 10 000 compression cycles at an extreme strain of 99%. Moreover, the rGO aerogel demonstrates outstanding compressive strength: the stress of 1.5 MPa under 99% strain and the ratio of strength to density of 177 kPa cm3 mg−1, which overcomes the shortcoming of low stress tolerance for general graphene aerogels. In addition, the rGO aerogel shows high electrical conductivity of 42.7 S m−1 and exceptionally stable current signal response even after tens of thousands of compression cycles under extreme strain (99%). The outstanding properties of this graphene aerogel demonstrate its promising potential as a piezoresistive sensor with high stability and wide detection range.
[Display omitted]
•Sponge skeleton-like graphene aerogel is obtained by hydrothermal self-assembling.•Superelastic and recycle stability at 99% strain of 10,000 compression cycles.•Great compressive strength (1.5 MPa) and strength-density ratio (177 kPa cm3 mg−1).•Electrical conductivity of 42.7 S m−1 and stable current response at 99% strain.•High-performance wearable piezoresistive sensor for detecting human movements. |
doi_str_mv | 10.1016/j.carbon.2022.01.055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651850298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622322000641</els_id><sourcerecordid>2651850298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f69390f871e4ac3e8b4bdcae71148e9ed1931a45d3846f8f9f298b75b8e0f4073</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gYeA59akSdv0Isjix8KCB_Uc0mRSW2tTk1bYf2-WevY0DLzPO8yD0DUlGSW0vO0zrXzjxiwneZ4RmpGiOEEJFRVLmajpKUoIISIt85ydo4sQ-rhyQXmCdq_LBB6bxatmANx6NX3ACFiBdy0MuBvD1HkwuDlgAzClARRuBxUCDpMbW8DhEwaY3XiJzqwaAlz9zQ16f3x42z6n-5en3fZ-n2rG-JzasmY1saKiwJVmIBreGK2gopQLqMHQmlHFC8MEL62wtc1r0VRFI4BYTiq2QTdr7-Td9wJhlr1b_BhPyrwsqChIBGKKryntXQgerJx896X8QVIij9JkL1dp8ihNEiqjtIjdrRjED3468DLoDkYNJkrQszSu-7_gF186dx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651850298</pqid></control><display><type>article</type><title>Super durable graphene aerogel inspired by deep-sea glass sponge skeleton</title><source>Elsevier ScienceDirect Journals</source><creator>Luo, Rong ; Li, Zhangpeng ; Wu, Xianzhang ; Liu, Hong ; Ma, Limin ; Wu, Jianyu ; Qin, Ganlin ; Wang, Jinqing ; Yang, Shengrong</creator><creatorcontrib>Luo, Rong ; Li, Zhangpeng ; Wu, Xianzhang ; Liu, Hong ; Ma, Limin ; Wu, Jianyu ; Qin, Ganlin ; Wang, Jinqing ; Yang, Shengrong</creatorcontrib><description>Herein, a facile hydrothermal self-assembling strategy is employed to prepare a reduced graphene oxide (rGO) aerogel with a multi-scale hierarchical cellular structure inspired by deep-sea glass sponge. This hierarchical cellular structure of the rGO aerogel, obtained by changing the carbon wall to cellular structure, can be broken down into six levels from the nano- to the macro-scale. Remarkably, the rGO aerogel, with multi-step reductions, shows significant flexibility and toughness under extra-high compressions: 99.9% of the original height is remained after 20 000 compression cycles at a high strain of 90%, whereas 79.8% of height is still preserved after 10 000 compression cycles at an extreme strain of 99%. Moreover, the rGO aerogel demonstrates outstanding compressive strength: the stress of 1.5 MPa under 99% strain and the ratio of strength to density of 177 kPa cm3 mg−1, which overcomes the shortcoming of low stress tolerance for general graphene aerogels. In addition, the rGO aerogel shows high electrical conductivity of 42.7 S m−1 and exceptionally stable current signal response even after tens of thousands of compression cycles under extreme strain (99%). The outstanding properties of this graphene aerogel demonstrate its promising potential as a piezoresistive sensor with high stability and wide detection range.
[Display omitted]
•Sponge skeleton-like graphene aerogel is obtained by hydrothermal self-assembling.•Superelastic and recycle stability at 99% strain of 10,000 compression cycles.•Great compressive strength (1.5 MPa) and strength-density ratio (177 kPa cm3 mg−1).•Electrical conductivity of 42.7 S m−1 and stable current response at 99% strain.•High-performance wearable piezoresistive sensor for detecting human movements.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2022.01.055</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aerogels ; Carbon ; Cellular structure ; Compressive properties ; Compressive strength ; Conductivity ; Deep sea environments ; Electrical resistivity ; Extra high strain ; Fatigue resistance ; Graphene ; Graphene aerogel ; High strength ; Piezoresistive sensor ; Self-assembly ; Sponge skeleton ; Strain ; Structural hierarchy</subject><ispartof>Carbon (New York), 2022-05, Vol.191, p.153-163</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f69390f871e4ac3e8b4bdcae71148e9ed1931a45d3846f8f9f298b75b8e0f4073</citedby><cites>FETCH-LOGICAL-c334t-f69390f871e4ac3e8b4bdcae71148e9ed1931a45d3846f8f9f298b75b8e0f4073</cites><orcidid>0000-0002-0768-6960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622322000641$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Luo, Rong</creatorcontrib><creatorcontrib>Li, Zhangpeng</creatorcontrib><creatorcontrib>Wu, Xianzhang</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Ma, Limin</creatorcontrib><creatorcontrib>Wu, Jianyu</creatorcontrib><creatorcontrib>Qin, Ganlin</creatorcontrib><creatorcontrib>Wang, Jinqing</creatorcontrib><creatorcontrib>Yang, Shengrong</creatorcontrib><title>Super durable graphene aerogel inspired by deep-sea glass sponge skeleton</title><title>Carbon (New York)</title><description>Herein, a facile hydrothermal self-assembling strategy is employed to prepare a reduced graphene oxide (rGO) aerogel with a multi-scale hierarchical cellular structure inspired by deep-sea glass sponge. This hierarchical cellular structure of the rGO aerogel, obtained by changing the carbon wall to cellular structure, can be broken down into six levels from the nano- to the macro-scale. Remarkably, the rGO aerogel, with multi-step reductions, shows significant flexibility and toughness under extra-high compressions: 99.9% of the original height is remained after 20 000 compression cycles at a high strain of 90%, whereas 79.8% of height is still preserved after 10 000 compression cycles at an extreme strain of 99%. Moreover, the rGO aerogel demonstrates outstanding compressive strength: the stress of 1.5 MPa under 99% strain and the ratio of strength to density of 177 kPa cm3 mg−1, which overcomes the shortcoming of low stress tolerance for general graphene aerogels. In addition, the rGO aerogel shows high electrical conductivity of 42.7 S m−1 and exceptionally stable current signal response even after tens of thousands of compression cycles under extreme strain (99%). The outstanding properties of this graphene aerogel demonstrate its promising potential as a piezoresistive sensor with high stability and wide detection range.
[Display omitted]
•Sponge skeleton-like graphene aerogel is obtained by hydrothermal self-assembling.•Superelastic and recycle stability at 99% strain of 10,000 compression cycles.•Great compressive strength (1.5 MPa) and strength-density ratio (177 kPa cm3 mg−1).•Electrical conductivity of 42.7 S m−1 and stable current response at 99% strain.•High-performance wearable piezoresistive sensor for detecting human movements.</description><subject>Aerogels</subject><subject>Carbon</subject><subject>Cellular structure</subject><subject>Compressive properties</subject><subject>Compressive strength</subject><subject>Conductivity</subject><subject>Deep sea environments</subject><subject>Electrical resistivity</subject><subject>Extra high strain</subject><subject>Fatigue resistance</subject><subject>Graphene</subject><subject>Graphene aerogel</subject><subject>High strength</subject><subject>Piezoresistive sensor</subject><subject>Self-assembly</subject><subject>Sponge skeleton</subject><subject>Strain</subject><subject>Structural hierarchy</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFf_gYeA59akSdv0Isjix8KCB_Uc0mRSW2tTk1bYf2-WevY0DLzPO8yD0DUlGSW0vO0zrXzjxiwneZ4RmpGiOEEJFRVLmajpKUoIISIt85ydo4sQ-rhyQXmCdq_LBB6bxatmANx6NX3ACFiBdy0MuBvD1HkwuDlgAzClARRuBxUCDpMbW8DhEwaY3XiJzqwaAlz9zQ16f3x42z6n-5en3fZ-n2rG-JzasmY1saKiwJVmIBreGK2gopQLqMHQmlHFC8MEL62wtc1r0VRFI4BYTiq2QTdr7-Td9wJhlr1b_BhPyrwsqChIBGKKryntXQgerJx896X8QVIij9JkL1dp8ihNEiqjtIjdrRjED3468DLoDkYNJkrQszSu-7_gF186dx4</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Luo, Rong</creator><creator>Li, Zhangpeng</creator><creator>Wu, Xianzhang</creator><creator>Liu, Hong</creator><creator>Ma, Limin</creator><creator>Wu, Jianyu</creator><creator>Qin, Ganlin</creator><creator>Wang, Jinqing</creator><creator>Yang, Shengrong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0768-6960</orcidid></search><sort><creationdate>202205</creationdate><title>Super durable graphene aerogel inspired by deep-sea glass sponge skeleton</title><author>Luo, Rong ; Li, Zhangpeng ; Wu, Xianzhang ; Liu, Hong ; Ma, Limin ; Wu, Jianyu ; Qin, Ganlin ; Wang, Jinqing ; Yang, Shengrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f69390f871e4ac3e8b4bdcae71148e9ed1931a45d3846f8f9f298b75b8e0f4073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerogels</topic><topic>Carbon</topic><topic>Cellular structure</topic><topic>Compressive properties</topic><topic>Compressive strength</topic><topic>Conductivity</topic><topic>Deep sea environments</topic><topic>Electrical resistivity</topic><topic>Extra high strain</topic><topic>Fatigue resistance</topic><topic>Graphene</topic><topic>Graphene aerogel</topic><topic>High strength</topic><topic>Piezoresistive sensor</topic><topic>Self-assembly</topic><topic>Sponge skeleton</topic><topic>Strain</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Rong</creatorcontrib><creatorcontrib>Li, Zhangpeng</creatorcontrib><creatorcontrib>Wu, Xianzhang</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Ma, Limin</creatorcontrib><creatorcontrib>Wu, Jianyu</creatorcontrib><creatorcontrib>Qin, Ganlin</creatorcontrib><creatorcontrib>Wang, Jinqing</creatorcontrib><creatorcontrib>Yang, Shengrong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Rong</au><au>Li, Zhangpeng</au><au>Wu, Xianzhang</au><au>Liu, Hong</au><au>Ma, Limin</au><au>Wu, Jianyu</au><au>Qin, Ganlin</au><au>Wang, Jinqing</au><au>Yang, Shengrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super durable graphene aerogel inspired by deep-sea glass sponge skeleton</atitle><jtitle>Carbon (New York)</jtitle><date>2022-05</date><risdate>2022</risdate><volume>191</volume><spage>153</spage><epage>163</epage><pages>153-163</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Herein, a facile hydrothermal self-assembling strategy is employed to prepare a reduced graphene oxide (rGO) aerogel with a multi-scale hierarchical cellular structure inspired by deep-sea glass sponge. This hierarchical cellular structure of the rGO aerogel, obtained by changing the carbon wall to cellular structure, can be broken down into six levels from the nano- to the macro-scale. Remarkably, the rGO aerogel, with multi-step reductions, shows significant flexibility and toughness under extra-high compressions: 99.9% of the original height is remained after 20 000 compression cycles at a high strain of 90%, whereas 79.8% of height is still preserved after 10 000 compression cycles at an extreme strain of 99%. Moreover, the rGO aerogel demonstrates outstanding compressive strength: the stress of 1.5 MPa under 99% strain and the ratio of strength to density of 177 kPa cm3 mg−1, which overcomes the shortcoming of low stress tolerance for general graphene aerogels. In addition, the rGO aerogel shows high electrical conductivity of 42.7 S m−1 and exceptionally stable current signal response even after tens of thousands of compression cycles under extreme strain (99%). The outstanding properties of this graphene aerogel demonstrate its promising potential as a piezoresistive sensor with high stability and wide detection range.
[Display omitted]
•Sponge skeleton-like graphene aerogel is obtained by hydrothermal self-assembling.•Superelastic and recycle stability at 99% strain of 10,000 compression cycles.•Great compressive strength (1.5 MPa) and strength-density ratio (177 kPa cm3 mg−1).•Electrical conductivity of 42.7 S m−1 and stable current response at 99% strain.•High-performance wearable piezoresistive sensor for detecting human movements.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2022.01.055</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0768-6960</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2022-05, Vol.191, p.153-163 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2651850298 |
source | Elsevier ScienceDirect Journals |
subjects | Aerogels Carbon Cellular structure Compressive properties Compressive strength Conductivity Deep sea environments Electrical resistivity Extra high strain Fatigue resistance Graphene Graphene aerogel High strength Piezoresistive sensor Self-assembly Sponge skeleton Strain Structural hierarchy |
title | Super durable graphene aerogel inspired by deep-sea glass sponge skeleton |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%20durable%20graphene%20aerogel%20inspired%20by%20deep-sea%20glass%20sponge%20skeleton&rft.jtitle=Carbon%20(New%20York)&rft.au=Luo,%20Rong&rft.date=2022-05&rft.volume=191&rft.spage=153&rft.epage=163&rft.pages=153-163&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2022.01.055&rft_dat=%3Cproquest_cross%3E2651850298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651850298&rft_id=info:pmid/&rft_els_id=S0008622322000641&rfr_iscdi=true |