Super durable graphene aerogel inspired by deep-sea glass sponge skeleton

Herein, a facile hydrothermal self-assembling strategy is employed to prepare a reduced graphene oxide (rGO) aerogel with a multi-scale hierarchical cellular structure inspired by deep-sea glass sponge. This hierarchical cellular structure of the rGO aerogel, obtained by changing the carbon wall to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2022-05, Vol.191, p.153-163
Hauptverfasser: Luo, Rong, Li, Zhangpeng, Wu, Xianzhang, Liu, Hong, Ma, Limin, Wu, Jianyu, Qin, Ganlin, Wang, Jinqing, Yang, Shengrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue
container_start_page 153
container_title Carbon (New York)
container_volume 191
creator Luo, Rong
Li, Zhangpeng
Wu, Xianzhang
Liu, Hong
Ma, Limin
Wu, Jianyu
Qin, Ganlin
Wang, Jinqing
Yang, Shengrong
description Herein, a facile hydrothermal self-assembling strategy is employed to prepare a reduced graphene oxide (rGO) aerogel with a multi-scale hierarchical cellular structure inspired by deep-sea glass sponge. This hierarchical cellular structure of the rGO aerogel, obtained by changing the carbon wall to cellular structure, can be broken down into six levels from the nano- to the macro-scale. Remarkably, the rGO aerogel, with multi-step reductions, shows significant flexibility and toughness under extra-high compressions: 99.9% of the original height is remained after 20 000 compression cycles at a high strain of 90%, whereas 79.8% of height is still preserved after 10 000 compression cycles at an extreme strain of 99%. Moreover, the rGO aerogel demonstrates outstanding compressive strength: the stress of 1.5 MPa under 99% strain and the ratio of strength to density of 177 kPa cm3 mg−1, which overcomes the shortcoming of low stress tolerance for general graphene aerogels. In addition, the rGO aerogel shows high electrical conductivity of 42.7 S m−1 and exceptionally stable current signal response even after tens of thousands of compression cycles under extreme strain (99%). The outstanding properties of this graphene aerogel demonstrate its promising potential as a piezoresistive sensor with high stability and wide detection range. [Display omitted] •Sponge skeleton-like graphene aerogel is obtained by hydrothermal self-assembling.•Superelastic and recycle stability at 99% strain of 10,000 compression cycles.•Great compressive strength (1.5 MPa) and strength-density ratio (177 kPa cm3 mg−1).•Electrical conductivity of 42.7 S m−1 and stable current response at 99% strain.•High-performance wearable piezoresistive sensor for detecting human movements.
doi_str_mv 10.1016/j.carbon.2022.01.055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651850298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622322000641</els_id><sourcerecordid>2651850298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f69390f871e4ac3e8b4bdcae71148e9ed1931a45d3846f8f9f298b75b8e0f4073</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gYeA59akSdv0Isjix8KCB_Uc0mRSW2tTk1bYf2-WevY0DLzPO8yD0DUlGSW0vO0zrXzjxiwneZ4RmpGiOEEJFRVLmajpKUoIISIt85ydo4sQ-rhyQXmCdq_LBB6bxatmANx6NX3ACFiBdy0MuBvD1HkwuDlgAzClARRuBxUCDpMbW8DhEwaY3XiJzqwaAlz9zQ16f3x42z6n-5en3fZ-n2rG-JzasmY1saKiwJVmIBreGK2gopQLqMHQmlHFC8MEL62wtc1r0VRFI4BYTiq2QTdr7-Td9wJhlr1b_BhPyrwsqChIBGKKryntXQgerJx896X8QVIij9JkL1dp8ihNEiqjtIjdrRjED3468DLoDkYNJkrQszSu-7_gF186dx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651850298</pqid></control><display><type>article</type><title>Super durable graphene aerogel inspired by deep-sea glass sponge skeleton</title><source>Elsevier ScienceDirect Journals</source><creator>Luo, Rong ; Li, Zhangpeng ; Wu, Xianzhang ; Liu, Hong ; Ma, Limin ; Wu, Jianyu ; Qin, Ganlin ; Wang, Jinqing ; Yang, Shengrong</creator><creatorcontrib>Luo, Rong ; Li, Zhangpeng ; Wu, Xianzhang ; Liu, Hong ; Ma, Limin ; Wu, Jianyu ; Qin, Ganlin ; Wang, Jinqing ; Yang, Shengrong</creatorcontrib><description>Herein, a facile hydrothermal self-assembling strategy is employed to prepare a reduced graphene oxide (rGO) aerogel with a multi-scale hierarchical cellular structure inspired by deep-sea glass sponge. This hierarchical cellular structure of the rGO aerogel, obtained by changing the carbon wall to cellular structure, can be broken down into six levels from the nano- to the macro-scale. Remarkably, the rGO aerogel, with multi-step reductions, shows significant flexibility and toughness under extra-high compressions: 99.9% of the original height is remained after 20 000 compression cycles at a high strain of 90%, whereas 79.8% of height is still preserved after 10 000 compression cycles at an extreme strain of 99%. Moreover, the rGO aerogel demonstrates outstanding compressive strength: the stress of 1.5 MPa under 99% strain and the ratio of strength to density of 177 kPa cm3 mg−1, which overcomes the shortcoming of low stress tolerance for general graphene aerogels. In addition, the rGO aerogel shows high electrical conductivity of 42.7 S m−1 and exceptionally stable current signal response even after tens of thousands of compression cycles under extreme strain (99%). The outstanding properties of this graphene aerogel demonstrate its promising potential as a piezoresistive sensor with high stability and wide detection range. [Display omitted] •Sponge skeleton-like graphene aerogel is obtained by hydrothermal self-assembling.•Superelastic and recycle stability at 99% strain of 10,000 compression cycles.•Great compressive strength (1.5 MPa) and strength-density ratio (177 kPa cm3 mg−1).•Electrical conductivity of 42.7 S m−1 and stable current response at 99% strain.•High-performance wearable piezoresistive sensor for detecting human movements.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2022.01.055</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aerogels ; Carbon ; Cellular structure ; Compressive properties ; Compressive strength ; Conductivity ; Deep sea environments ; Electrical resistivity ; Extra high strain ; Fatigue resistance ; Graphene ; Graphene aerogel ; High strength ; Piezoresistive sensor ; Self-assembly ; Sponge skeleton ; Strain ; Structural hierarchy</subject><ispartof>Carbon (New York), 2022-05, Vol.191, p.153-163</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f69390f871e4ac3e8b4bdcae71148e9ed1931a45d3846f8f9f298b75b8e0f4073</citedby><cites>FETCH-LOGICAL-c334t-f69390f871e4ac3e8b4bdcae71148e9ed1931a45d3846f8f9f298b75b8e0f4073</cites><orcidid>0000-0002-0768-6960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622322000641$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Luo, Rong</creatorcontrib><creatorcontrib>Li, Zhangpeng</creatorcontrib><creatorcontrib>Wu, Xianzhang</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Ma, Limin</creatorcontrib><creatorcontrib>Wu, Jianyu</creatorcontrib><creatorcontrib>Qin, Ganlin</creatorcontrib><creatorcontrib>Wang, Jinqing</creatorcontrib><creatorcontrib>Yang, Shengrong</creatorcontrib><title>Super durable graphene aerogel inspired by deep-sea glass sponge skeleton</title><title>Carbon (New York)</title><description>Herein, a facile hydrothermal self-assembling strategy is employed to prepare a reduced graphene oxide (rGO) aerogel with a multi-scale hierarchical cellular structure inspired by deep-sea glass sponge. This hierarchical cellular structure of the rGO aerogel, obtained by changing the carbon wall to cellular structure, can be broken down into six levels from the nano- to the macro-scale. Remarkably, the rGO aerogel, with multi-step reductions, shows significant flexibility and toughness under extra-high compressions: 99.9% of the original height is remained after 20 000 compression cycles at a high strain of 90%, whereas 79.8% of height is still preserved after 10 000 compression cycles at an extreme strain of 99%. Moreover, the rGO aerogel demonstrates outstanding compressive strength: the stress of 1.5 MPa under 99% strain and the ratio of strength to density of 177 kPa cm3 mg−1, which overcomes the shortcoming of low stress tolerance for general graphene aerogels. In addition, the rGO aerogel shows high electrical conductivity of 42.7 S m−1 and exceptionally stable current signal response even after tens of thousands of compression cycles under extreme strain (99%). The outstanding properties of this graphene aerogel demonstrate its promising potential as a piezoresistive sensor with high stability and wide detection range. [Display omitted] •Sponge skeleton-like graphene aerogel is obtained by hydrothermal self-assembling.•Superelastic and recycle stability at 99% strain of 10,000 compression cycles.•Great compressive strength (1.5 MPa) and strength-density ratio (177 kPa cm3 mg−1).•Electrical conductivity of 42.7 S m−1 and stable current response at 99% strain.•High-performance wearable piezoresistive sensor for detecting human movements.</description><subject>Aerogels</subject><subject>Carbon</subject><subject>Cellular structure</subject><subject>Compressive properties</subject><subject>Compressive strength</subject><subject>Conductivity</subject><subject>Deep sea environments</subject><subject>Electrical resistivity</subject><subject>Extra high strain</subject><subject>Fatigue resistance</subject><subject>Graphene</subject><subject>Graphene aerogel</subject><subject>High strength</subject><subject>Piezoresistive sensor</subject><subject>Self-assembly</subject><subject>Sponge skeleton</subject><subject>Strain</subject><subject>Structural hierarchy</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFf_gYeA59akSdv0Isjix8KCB_Uc0mRSW2tTk1bYf2-WevY0DLzPO8yD0DUlGSW0vO0zrXzjxiwneZ4RmpGiOEEJFRVLmajpKUoIISIt85ydo4sQ-rhyQXmCdq_LBB6bxatmANx6NX3ACFiBdy0MuBvD1HkwuDlgAzClARRuBxUCDpMbW8DhEwaY3XiJzqwaAlz9zQ16f3x42z6n-5en3fZ-n2rG-JzasmY1saKiwJVmIBreGK2gopQLqMHQmlHFC8MEL62wtc1r0VRFI4BYTiq2QTdr7-Td9wJhlr1b_BhPyrwsqChIBGKKryntXQgerJx896X8QVIij9JkL1dp8ihNEiqjtIjdrRjED3468DLoDkYNJkrQszSu-7_gF186dx4</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Luo, Rong</creator><creator>Li, Zhangpeng</creator><creator>Wu, Xianzhang</creator><creator>Liu, Hong</creator><creator>Ma, Limin</creator><creator>Wu, Jianyu</creator><creator>Qin, Ganlin</creator><creator>Wang, Jinqing</creator><creator>Yang, Shengrong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0768-6960</orcidid></search><sort><creationdate>202205</creationdate><title>Super durable graphene aerogel inspired by deep-sea glass sponge skeleton</title><author>Luo, Rong ; Li, Zhangpeng ; Wu, Xianzhang ; Liu, Hong ; Ma, Limin ; Wu, Jianyu ; Qin, Ganlin ; Wang, Jinqing ; Yang, Shengrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f69390f871e4ac3e8b4bdcae71148e9ed1931a45d3846f8f9f298b75b8e0f4073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerogels</topic><topic>Carbon</topic><topic>Cellular structure</topic><topic>Compressive properties</topic><topic>Compressive strength</topic><topic>Conductivity</topic><topic>Deep sea environments</topic><topic>Electrical resistivity</topic><topic>Extra high strain</topic><topic>Fatigue resistance</topic><topic>Graphene</topic><topic>Graphene aerogel</topic><topic>High strength</topic><topic>Piezoresistive sensor</topic><topic>Self-assembly</topic><topic>Sponge skeleton</topic><topic>Strain</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Rong</creatorcontrib><creatorcontrib>Li, Zhangpeng</creatorcontrib><creatorcontrib>Wu, Xianzhang</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Ma, Limin</creatorcontrib><creatorcontrib>Wu, Jianyu</creatorcontrib><creatorcontrib>Qin, Ganlin</creatorcontrib><creatorcontrib>Wang, Jinqing</creatorcontrib><creatorcontrib>Yang, Shengrong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Rong</au><au>Li, Zhangpeng</au><au>Wu, Xianzhang</au><au>Liu, Hong</au><au>Ma, Limin</au><au>Wu, Jianyu</au><au>Qin, Ganlin</au><au>Wang, Jinqing</au><au>Yang, Shengrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super durable graphene aerogel inspired by deep-sea glass sponge skeleton</atitle><jtitle>Carbon (New York)</jtitle><date>2022-05</date><risdate>2022</risdate><volume>191</volume><spage>153</spage><epage>163</epage><pages>153-163</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Herein, a facile hydrothermal self-assembling strategy is employed to prepare a reduced graphene oxide (rGO) aerogel with a multi-scale hierarchical cellular structure inspired by deep-sea glass sponge. This hierarchical cellular structure of the rGO aerogel, obtained by changing the carbon wall to cellular structure, can be broken down into six levels from the nano- to the macro-scale. Remarkably, the rGO aerogel, with multi-step reductions, shows significant flexibility and toughness under extra-high compressions: 99.9% of the original height is remained after 20 000 compression cycles at a high strain of 90%, whereas 79.8% of height is still preserved after 10 000 compression cycles at an extreme strain of 99%. Moreover, the rGO aerogel demonstrates outstanding compressive strength: the stress of 1.5 MPa under 99% strain and the ratio of strength to density of 177 kPa cm3 mg−1, which overcomes the shortcoming of low stress tolerance for general graphene aerogels. In addition, the rGO aerogel shows high electrical conductivity of 42.7 S m−1 and exceptionally stable current signal response even after tens of thousands of compression cycles under extreme strain (99%). The outstanding properties of this graphene aerogel demonstrate its promising potential as a piezoresistive sensor with high stability and wide detection range. [Display omitted] •Sponge skeleton-like graphene aerogel is obtained by hydrothermal self-assembling.•Superelastic and recycle stability at 99% strain of 10,000 compression cycles.•Great compressive strength (1.5 MPa) and strength-density ratio (177 kPa cm3 mg−1).•Electrical conductivity of 42.7 S m−1 and stable current response at 99% strain.•High-performance wearable piezoresistive sensor for detecting human movements.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2022.01.055</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0768-6960</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2022-05, Vol.191, p.153-163
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2651850298
source Elsevier ScienceDirect Journals
subjects Aerogels
Carbon
Cellular structure
Compressive properties
Compressive strength
Conductivity
Deep sea environments
Electrical resistivity
Extra high strain
Fatigue resistance
Graphene
Graphene aerogel
High strength
Piezoresistive sensor
Self-assembly
Sponge skeleton
Strain
Structural hierarchy
title Super durable graphene aerogel inspired by deep-sea glass sponge skeleton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%20durable%20graphene%20aerogel%20inspired%20by%20deep-sea%20glass%20sponge%20skeleton&rft.jtitle=Carbon%20(New%20York)&rft.au=Luo,%20Rong&rft.date=2022-05&rft.volume=191&rft.spage=153&rft.epage=163&rft.pages=153-163&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2022.01.055&rft_dat=%3Cproquest_cross%3E2651850298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651850298&rft_id=info:pmid/&rft_els_id=S0008622322000641&rfr_iscdi=true