To achieve controlled specific capacities of silicon-based anodes for high-performance lithium-ion batteries

•A strategy can control the specific capacity of electrode and reduce the use of high cost active materials in applications.•The prepared Si/PC nanoparticles buffer the effect of silicon volume expansion while improve the diffusion of lithium ions.•The prepared hybrid electrode and full cell have an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-06, Vol.905, p.164189, Article 164189
Hauptverfasser: Ma, Yaodong, Guo, Pengqian, Liu, Mengting, Cheng, Pu, Zhang, Tianyao, Liu, Jiande, Liu, Dequan, He, Deyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 164189
container_title Journal of alloys and compounds
container_volume 905
creator Ma, Yaodong
Guo, Pengqian
Liu, Mengting
Cheng, Pu
Zhang, Tianyao
Liu, Jiande
Liu, Dequan
He, Deyan
description •A strategy can control the specific capacity of electrode and reduce the use of high cost active materials in applications.•The prepared Si/PC nanoparticles buffer the effect of silicon volume expansion while improve the diffusion of lithium ions.•The prepared hybrid electrode and full cell have an excellent electrochemical performance. [Display omitted] Silicon-based materials are expected to be the next generation of anode materials for lithium-ion batteries (LIBs). However, the electrode structure will be damaged due to large volume expansion during the lithiation process, resulting in a rapid decay of the battery performance. Nanostructures, porous structures, and carbon coatings have been shown to be effective in reducing the effect of volume expansion. In this work, porous carbon coated silicon (Si/PC) nanoparticles were prepared to suppress the effect of silicon volume expansion while improve the infiltration of electrolyte and the diffusion of lithium ions. The prepared Si/PC nanoparticles were mixed with commercial graphite in different mass ratios as anode materials for LIBs, which can effectively control the specific capacities of the anodes and help the practical applications by reducing the production cost. As the mass ratio of the prepared Si/PC nanoparticles to commercial graphite is 2:1, the first discharge specific capacity is 1586.3 mA h g−1 with an initial coulombic efficiency of 82.1% at a current density of 200 mA g−1. After 250 cycles at 1000 mA g−1, the capacity retention rate is 86.8%. The full cell with LiNi0.8Mn0.1Co0.1O2 as cathode shows an excellent cycle stability with a high stack cell energy density of 882.3 Wh/L.
doi_str_mv 10.1016/j.jallcom.2022.164189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651845235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838822005801</els_id><sourcerecordid>2651845235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-865e196ac35df9bc82d7ace5ed59c9a9507600eb0de26f6167e6fce75e467bdd3</originalsourceid><addsrcrecordid>eNqFkM1qwzAQhEVpoWnaRygIenYq2ZFsnUoJ_YNAL-lZyKt1LWNbruQE-vZVSO497bLMzDIfIfecrTjj8rFbdabvwQ-rnOX5iss1r9QFWfCqLLK1lOqSLJjKRVYVVXVNbmLsGGNcFXxB-p2nBlqHB6Tgxzn4vkdL44TgGgcUzGTAzQ4j9Q2NrndJldUmJpEZvU33xgfauu82mzCkfTAjIO3d3Lr9kDk_0trMM4YUcUuuGtNHvDvPJfl6fdlt3rPt59vH5nmbQVGUc1ZJgVxJA4Wwjaqhym1pAAVaoUAZJVgpGcOaWcxlI7ksUTaApcC1LGtriyV5OOVOwf_sMc668_swppc6l4JXa5EXIqnESQXBxxiw0VNwgwm_mjN9BKs7fQarj2D1CWzyPZ18mCocHAYdwWEqbV1AmLX17p-EP0qQhoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651845235</pqid></control><display><type>article</type><title>To achieve controlled specific capacities of silicon-based anodes for high-performance lithium-ion batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ma, Yaodong ; Guo, Pengqian ; Liu, Mengting ; Cheng, Pu ; Zhang, Tianyao ; Liu, Jiande ; Liu, Dequan ; He, Deyan</creator><creatorcontrib>Ma, Yaodong ; Guo, Pengqian ; Liu, Mengting ; Cheng, Pu ; Zhang, Tianyao ; Liu, Jiande ; Liu, Dequan ; He, Deyan</creatorcontrib><description>•A strategy can control the specific capacity of electrode and reduce the use of high cost active materials in applications.•The prepared Si/PC nanoparticles buffer the effect of silicon volume expansion while improve the diffusion of lithium ions.•The prepared hybrid electrode and full cell have an excellent electrochemical performance. [Display omitted] Silicon-based materials are expected to be the next generation of anode materials for lithium-ion batteries (LIBs). However, the electrode structure will be damaged due to large volume expansion during the lithiation process, resulting in a rapid decay of the battery performance. Nanostructures, porous structures, and carbon coatings have been shown to be effective in reducing the effect of volume expansion. In this work, porous carbon coated silicon (Si/PC) nanoparticles were prepared to suppress the effect of silicon volume expansion while improve the infiltration of electrolyte and the diffusion of lithium ions. The prepared Si/PC nanoparticles were mixed with commercial graphite in different mass ratios as anode materials for LIBs, which can effectively control the specific capacities of the anodes and help the practical applications by reducing the production cost. As the mass ratio of the prepared Si/PC nanoparticles to commercial graphite is 2:1, the first discharge specific capacity is 1586.3 mA h g−1 with an initial coulombic efficiency of 82.1% at a current density of 200 mA g−1. After 250 cycles at 1000 mA g−1, the capacity retention rate is 86.8%. The full cell with LiNi0.8Mn0.1Co0.1O2 as cathode shows an excellent cycle stability with a high stack cell energy density of 882.3 Wh/L.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.164189</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anode ; Carbon ; Electrode materials ; Flux density ; Graphite ; Lithium ; Lithium-ion batteries ; Mass ratios ; Nanoparticles ; Production costs ; Rechargeable batteries ; Silicon</subject><ispartof>Journal of alloys and compounds, 2022-06, Vol.905, p.164189, Article 164189</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-865e196ac35df9bc82d7ace5ed59c9a9507600eb0de26f6167e6fce75e467bdd3</citedby><cites>FETCH-LOGICAL-c337t-865e196ac35df9bc82d7ace5ed59c9a9507600eb0de26f6167e6fce75e467bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2022.164189$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ma, Yaodong</creatorcontrib><creatorcontrib>Guo, Pengqian</creatorcontrib><creatorcontrib>Liu, Mengting</creatorcontrib><creatorcontrib>Cheng, Pu</creatorcontrib><creatorcontrib>Zhang, Tianyao</creatorcontrib><creatorcontrib>Liu, Jiande</creatorcontrib><creatorcontrib>Liu, Dequan</creatorcontrib><creatorcontrib>He, Deyan</creatorcontrib><title>To achieve controlled specific capacities of silicon-based anodes for high-performance lithium-ion batteries</title><title>Journal of alloys and compounds</title><description>•A strategy can control the specific capacity of electrode and reduce the use of high cost active materials in applications.•The prepared Si/PC nanoparticles buffer the effect of silicon volume expansion while improve the diffusion of lithium ions.•The prepared hybrid electrode and full cell have an excellent electrochemical performance. [Display omitted] Silicon-based materials are expected to be the next generation of anode materials for lithium-ion batteries (LIBs). However, the electrode structure will be damaged due to large volume expansion during the lithiation process, resulting in a rapid decay of the battery performance. Nanostructures, porous structures, and carbon coatings have been shown to be effective in reducing the effect of volume expansion. In this work, porous carbon coated silicon (Si/PC) nanoparticles were prepared to suppress the effect of silicon volume expansion while improve the infiltration of electrolyte and the diffusion of lithium ions. The prepared Si/PC nanoparticles were mixed with commercial graphite in different mass ratios as anode materials for LIBs, which can effectively control the specific capacities of the anodes and help the practical applications by reducing the production cost. As the mass ratio of the prepared Si/PC nanoparticles to commercial graphite is 2:1, the first discharge specific capacity is 1586.3 mA h g−1 with an initial coulombic efficiency of 82.1% at a current density of 200 mA g−1. After 250 cycles at 1000 mA g−1, the capacity retention rate is 86.8%. The full cell with LiNi0.8Mn0.1Co0.1O2 as cathode shows an excellent cycle stability with a high stack cell energy density of 882.3 Wh/L.</description><subject>Anode</subject><subject>Carbon</subject><subject>Electrode materials</subject><subject>Flux density</subject><subject>Graphite</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Mass ratios</subject><subject>Nanoparticles</subject><subject>Production costs</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1qwzAQhEVpoWnaRygIenYq2ZFsnUoJ_YNAL-lZyKt1LWNbruQE-vZVSO497bLMzDIfIfecrTjj8rFbdabvwQ-rnOX5iss1r9QFWfCqLLK1lOqSLJjKRVYVVXVNbmLsGGNcFXxB-p2nBlqHB6Tgxzn4vkdL44TgGgcUzGTAzQ4j9Q2NrndJldUmJpEZvU33xgfauu82mzCkfTAjIO3d3Lr9kDk_0trMM4YUcUuuGtNHvDvPJfl6fdlt3rPt59vH5nmbQVGUc1ZJgVxJA4Wwjaqhym1pAAVaoUAZJVgpGcOaWcxlI7ksUTaApcC1LGtriyV5OOVOwf_sMc668_swppc6l4JXa5EXIqnESQXBxxiw0VNwgwm_mjN9BKs7fQarj2D1CWzyPZ18mCocHAYdwWEqbV1AmLX17p-EP0qQhoQ</recordid><startdate>20220605</startdate><enddate>20220605</enddate><creator>Ma, Yaodong</creator><creator>Guo, Pengqian</creator><creator>Liu, Mengting</creator><creator>Cheng, Pu</creator><creator>Zhang, Tianyao</creator><creator>Liu, Jiande</creator><creator>Liu, Dequan</creator><creator>He, Deyan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220605</creationdate><title>To achieve controlled specific capacities of silicon-based anodes for high-performance lithium-ion batteries</title><author>Ma, Yaodong ; Guo, Pengqian ; Liu, Mengting ; Cheng, Pu ; Zhang, Tianyao ; Liu, Jiande ; Liu, Dequan ; He, Deyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-865e196ac35df9bc82d7ace5ed59c9a9507600eb0de26f6167e6fce75e467bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anode</topic><topic>Carbon</topic><topic>Electrode materials</topic><topic>Flux density</topic><topic>Graphite</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Mass ratios</topic><topic>Nanoparticles</topic><topic>Production costs</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yaodong</creatorcontrib><creatorcontrib>Guo, Pengqian</creatorcontrib><creatorcontrib>Liu, Mengting</creatorcontrib><creatorcontrib>Cheng, Pu</creatorcontrib><creatorcontrib>Zhang, Tianyao</creatorcontrib><creatorcontrib>Liu, Jiande</creatorcontrib><creatorcontrib>Liu, Dequan</creatorcontrib><creatorcontrib>He, Deyan</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yaodong</au><au>Guo, Pengqian</au><au>Liu, Mengting</au><au>Cheng, Pu</au><au>Zhang, Tianyao</au><au>Liu, Jiande</au><au>Liu, Dequan</au><au>He, Deyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>To achieve controlled specific capacities of silicon-based anodes for high-performance lithium-ion batteries</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-06-05</date><risdate>2022</risdate><volume>905</volume><spage>164189</spage><pages>164189-</pages><artnum>164189</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•A strategy can control the specific capacity of electrode and reduce the use of high cost active materials in applications.•The prepared Si/PC nanoparticles buffer the effect of silicon volume expansion while improve the diffusion of lithium ions.•The prepared hybrid electrode and full cell have an excellent electrochemical performance. [Display omitted] Silicon-based materials are expected to be the next generation of anode materials for lithium-ion batteries (LIBs). However, the electrode structure will be damaged due to large volume expansion during the lithiation process, resulting in a rapid decay of the battery performance. Nanostructures, porous structures, and carbon coatings have been shown to be effective in reducing the effect of volume expansion. In this work, porous carbon coated silicon (Si/PC) nanoparticles were prepared to suppress the effect of silicon volume expansion while improve the infiltration of electrolyte and the diffusion of lithium ions. The prepared Si/PC nanoparticles were mixed with commercial graphite in different mass ratios as anode materials for LIBs, which can effectively control the specific capacities of the anodes and help the practical applications by reducing the production cost. As the mass ratio of the prepared Si/PC nanoparticles to commercial graphite is 2:1, the first discharge specific capacity is 1586.3 mA h g−1 with an initial coulombic efficiency of 82.1% at a current density of 200 mA g−1. After 250 cycles at 1000 mA g−1, the capacity retention rate is 86.8%. The full cell with LiNi0.8Mn0.1Co0.1O2 as cathode shows an excellent cycle stability with a high stack cell energy density of 882.3 Wh/L.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2022.164189</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-06, Vol.905, p.164189, Article 164189
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2651845235
source ScienceDirect Journals (5 years ago - present)
subjects Anode
Carbon
Electrode materials
Flux density
Graphite
Lithium
Lithium-ion batteries
Mass ratios
Nanoparticles
Production costs
Rechargeable batteries
Silicon
title To achieve controlled specific capacities of silicon-based anodes for high-performance lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=To%20achieve%20controlled%20specific%20capacities%20of%20silicon-based%20anodes%20for%20high-performance%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Ma,%20Yaodong&rft.date=2022-06-05&rft.volume=905&rft.spage=164189&rft.pages=164189-&rft.artnum=164189&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.164189&rft_dat=%3Cproquest_cross%3E2651845235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651845235&rft_id=info:pmid/&rft_els_id=S0925838822005801&rfr_iscdi=true