Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems
This article proposes a systematic approach for optimal reset law design of a class of nonlinear systems. By using the guaranteed cost control method, sufficient conditions for the design of optimal reset law are derived in terms of linear matrix inequalities. In an offline design procedure, the res...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2022-05, Vol.32 (8), p.4739-4751 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4751 |
---|---|
container_issue | 8 |
container_start_page | 4739 |
container_title | International journal of robust and nonlinear control |
container_volume | 32 |
creator | Shahbazzadeh, Majid Sadati, Seyed Jalil HosseinNia, S. Hassan |
description | This article proposes a systematic approach for optimal reset law design of a class of nonlinear systems. By using the guaranteed cost control method, sufficient conditions for the design of optimal reset law are derived in terms of linear matrix inequalities. In an offline design procedure, the reset law is computed that minimizes the upper bound of a quadratic cost function. The proposed method can be implemented for real‐time applications even with small sampling time. The simulation results verify the efficacy and effectiveness of the proposed theoretical results. |
doi_str_mv | 10.1002/rnc.6057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651639124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651639124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3277-b9a7caac1a301586de36b0682f4bd08829cb57c960c78fc00dc5d53eb14d02983</originalsourceid><addsrcrecordid>eNp1kEtLAzEQgIMoWKvgTwh48bJ1kuwrRym-oFgQPcdskm23bJM1SSnrrze1Xr3Mg_mYYT6ErgnMCAC981bNSiiqEzQhwHlGKOOnhzrnWc0pO0cXIWwA0ozmE_S5HGK3lT32JpiIe7nH2oRuZXEjg9HYWbzaSS9tNKlTLsQUbPSux1sT107j1nm86Iag1l38xtbZvrNGehzGEM02XKKzVvbBXP3lKfp4fHifP2eL5dPL_H6RKUarKmu4rJSUikgGpKhLbVjZQFnTNm801DXlqikqxUtQVd0qAK0KXTDTkFwD5TWbopvj3sG7r50JUWzcztt0UtCyICXjhOaJuj1SyrsQvGnF4NP7fhQExMGfSP7EwV9CsyO673oz_suJt9f5L_8DnqNySQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651639124</pqid></control><display><type>article</type><title>Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems</title><source>Wiley Online Library All Journals</source><creator>Shahbazzadeh, Majid ; Sadati, Seyed Jalil ; HosseinNia, S. Hassan</creator><creatorcontrib>Shahbazzadeh, Majid ; Sadati, Seyed Jalil ; HosseinNia, S. Hassan</creatorcontrib><description>This article proposes a systematic approach for optimal reset law design of a class of nonlinear systems. By using the guaranteed cost control method, sufficient conditions for the design of optimal reset law are derived in terms of linear matrix inequalities. In an offline design procedure, the reset law is computed that minimizes the upper bound of a quadratic cost function. The proposed method can be implemented for real‐time applications even with small sampling time. The simulation results verify the efficacy and effectiveness of the proposed theoretical results.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6057</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control methods ; Control systems ; Cost function ; guaranteed cost control ; Linear matrix inequalities ; Lipschitz nonlinearity ; Mathematical analysis ; Nonlinear systems ; reset control systems ; reset law ; Upper bounds</subject><ispartof>International journal of robust and nonlinear control, 2022-05, Vol.32 (8), p.4739-4751</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3277-b9a7caac1a301586de36b0682f4bd08829cb57c960c78fc00dc5d53eb14d02983</citedby><cites>FETCH-LOGICAL-c3277-b9a7caac1a301586de36b0682f4bd08829cb57c960c78fc00dc5d53eb14d02983</cites><orcidid>0000-0003-0877-7888 ; 0000-0003-3964-7648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6057$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6057$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Shahbazzadeh, Majid</creatorcontrib><creatorcontrib>Sadati, Seyed Jalil</creatorcontrib><creatorcontrib>HosseinNia, S. Hassan</creatorcontrib><title>Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems</title><title>International journal of robust and nonlinear control</title><description>This article proposes a systematic approach for optimal reset law design of a class of nonlinear systems. By using the guaranteed cost control method, sufficient conditions for the design of optimal reset law are derived in terms of linear matrix inequalities. In an offline design procedure, the reset law is computed that minimizes the upper bound of a quadratic cost function. The proposed method can be implemented for real‐time applications even with small sampling time. The simulation results verify the efficacy and effectiveness of the proposed theoretical results.</description><subject>Control methods</subject><subject>Control systems</subject><subject>Cost function</subject><subject>guaranteed cost control</subject><subject>Linear matrix inequalities</subject><subject>Lipschitz nonlinearity</subject><subject>Mathematical analysis</subject><subject>Nonlinear systems</subject><subject>reset control systems</subject><subject>reset law</subject><subject>Upper bounds</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQgIMoWKvgTwh48bJ1kuwrRym-oFgQPcdskm23bJM1SSnrrze1Xr3Mg_mYYT6ErgnMCAC981bNSiiqEzQhwHlGKOOnhzrnWc0pO0cXIWwA0ozmE_S5HGK3lT32JpiIe7nH2oRuZXEjg9HYWbzaSS9tNKlTLsQUbPSux1sT107j1nm86Iag1l38xtbZvrNGehzGEM02XKKzVvbBXP3lKfp4fHifP2eL5dPL_H6RKUarKmu4rJSUikgGpKhLbVjZQFnTNm801DXlqikqxUtQVd0qAK0KXTDTkFwD5TWbopvj3sG7r50JUWzcztt0UtCyICXjhOaJuj1SyrsQvGnF4NP7fhQExMGfSP7EwV9CsyO673oz_suJt9f5L_8DnqNySQ</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>Shahbazzadeh, Majid</creator><creator>Sadati, Seyed Jalil</creator><creator>HosseinNia, S. Hassan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0877-7888</orcidid><orcidid>https://orcid.org/0000-0003-3964-7648</orcidid></search><sort><creationdate>20220525</creationdate><title>Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems</title><author>Shahbazzadeh, Majid ; Sadati, Seyed Jalil ; HosseinNia, S. Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3277-b9a7caac1a301586de36b0682f4bd08829cb57c960c78fc00dc5d53eb14d02983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control methods</topic><topic>Control systems</topic><topic>Cost function</topic><topic>guaranteed cost control</topic><topic>Linear matrix inequalities</topic><topic>Lipschitz nonlinearity</topic><topic>Mathematical analysis</topic><topic>Nonlinear systems</topic><topic>reset control systems</topic><topic>reset law</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahbazzadeh, Majid</creatorcontrib><creatorcontrib>Sadati, Seyed Jalil</creatorcontrib><creatorcontrib>HosseinNia, S. Hassan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahbazzadeh, Majid</au><au>Sadati, Seyed Jalil</au><au>HosseinNia, S. Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2022-05-25</date><risdate>2022</risdate><volume>32</volume><issue>8</issue><spage>4739</spage><epage>4751</epage><pages>4739-4751</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article proposes a systematic approach for optimal reset law design of a class of nonlinear systems. By using the guaranteed cost control method, sufficient conditions for the design of optimal reset law are derived in terms of linear matrix inequalities. In an offline design procedure, the reset law is computed that minimizes the upper bound of a quadratic cost function. The proposed method can be implemented for real‐time applications even with small sampling time. The simulation results verify the efficacy and effectiveness of the proposed theoretical results.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6057</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0877-7888</orcidid><orcidid>https://orcid.org/0000-0003-3964-7648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2022-05, Vol.32 (8), p.4739-4751 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2651639124 |
source | Wiley Online Library All Journals |
subjects | Control methods Control systems Cost function guaranteed cost control Linear matrix inequalities Lipschitz nonlinearity Mathematical analysis Nonlinear systems reset control systems reset law Upper bounds |
title | Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20reset%20law%20design%20based%20on%20guaranteed%20cost%20control%20method%20for%20Lipschitz%20nonlinear%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Shahbazzadeh,%20Majid&rft.date=2022-05-25&rft.volume=32&rft.issue=8&rft.spage=4739&rft.epage=4751&rft.pages=4739-4751&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6057&rft_dat=%3Cproquest_cross%3E2651639124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651639124&rft_id=info:pmid/&rfr_iscdi=true |