Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems

This article proposes a systematic approach for optimal reset law design of a class of nonlinear systems. By using the guaranteed cost control method, sufficient conditions for the design of optimal reset law are derived in terms of linear matrix inequalities. In an offline design procedure, the res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2022-05, Vol.32 (8), p.4739-4751
Hauptverfasser: Shahbazzadeh, Majid, Sadati, Seyed Jalil, HosseinNia, S. Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4751
container_issue 8
container_start_page 4739
container_title International journal of robust and nonlinear control
container_volume 32
creator Shahbazzadeh, Majid
Sadati, Seyed Jalil
HosseinNia, S. Hassan
description This article proposes a systematic approach for optimal reset law design of a class of nonlinear systems. By using the guaranteed cost control method, sufficient conditions for the design of optimal reset law are derived in terms of linear matrix inequalities. In an offline design procedure, the reset law is computed that minimizes the upper bound of a quadratic cost function. The proposed method can be implemented for real‐time applications even with small sampling time. The simulation results verify the efficacy and effectiveness of the proposed theoretical results.
doi_str_mv 10.1002/rnc.6057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651639124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651639124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3277-b9a7caac1a301586de36b0682f4bd08829cb57c960c78fc00dc5d53eb14d02983</originalsourceid><addsrcrecordid>eNp1kEtLAzEQgIMoWKvgTwh48bJ1kuwrRym-oFgQPcdskm23bJM1SSnrrze1Xr3Mg_mYYT6ErgnMCAC981bNSiiqEzQhwHlGKOOnhzrnWc0pO0cXIWwA0ozmE_S5HGK3lT32JpiIe7nH2oRuZXEjg9HYWbzaSS9tNKlTLsQUbPSux1sT107j1nm86Iag1l38xtbZvrNGehzGEM02XKKzVvbBXP3lKfp4fHifP2eL5dPL_H6RKUarKmu4rJSUikgGpKhLbVjZQFnTNm801DXlqikqxUtQVd0qAK0KXTDTkFwD5TWbopvj3sG7r50JUWzcztt0UtCyICXjhOaJuj1SyrsQvGnF4NP7fhQExMGfSP7EwV9CsyO673oz_suJt9f5L_8DnqNySQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651639124</pqid></control><display><type>article</type><title>Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems</title><source>Wiley Online Library All Journals</source><creator>Shahbazzadeh, Majid ; Sadati, Seyed Jalil ; HosseinNia, S. Hassan</creator><creatorcontrib>Shahbazzadeh, Majid ; Sadati, Seyed Jalil ; HosseinNia, S. Hassan</creatorcontrib><description>This article proposes a systematic approach for optimal reset law design of a class of nonlinear systems. By using the guaranteed cost control method, sufficient conditions for the design of optimal reset law are derived in terms of linear matrix inequalities. In an offline design procedure, the reset law is computed that minimizes the upper bound of a quadratic cost function. The proposed method can be implemented for real‐time applications even with small sampling time. The simulation results verify the efficacy and effectiveness of the proposed theoretical results.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6057</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control methods ; Control systems ; Cost function ; guaranteed cost control ; Linear matrix inequalities ; Lipschitz nonlinearity ; Mathematical analysis ; Nonlinear systems ; reset control systems ; reset law ; Upper bounds</subject><ispartof>International journal of robust and nonlinear control, 2022-05, Vol.32 (8), p.4739-4751</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3277-b9a7caac1a301586de36b0682f4bd08829cb57c960c78fc00dc5d53eb14d02983</citedby><cites>FETCH-LOGICAL-c3277-b9a7caac1a301586de36b0682f4bd08829cb57c960c78fc00dc5d53eb14d02983</cites><orcidid>0000-0003-0877-7888 ; 0000-0003-3964-7648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6057$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6057$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Shahbazzadeh, Majid</creatorcontrib><creatorcontrib>Sadati, Seyed Jalil</creatorcontrib><creatorcontrib>HosseinNia, S. Hassan</creatorcontrib><title>Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems</title><title>International journal of robust and nonlinear control</title><description>This article proposes a systematic approach for optimal reset law design of a class of nonlinear systems. By using the guaranteed cost control method, sufficient conditions for the design of optimal reset law are derived in terms of linear matrix inequalities. In an offline design procedure, the reset law is computed that minimizes the upper bound of a quadratic cost function. The proposed method can be implemented for real‐time applications even with small sampling time. The simulation results verify the efficacy and effectiveness of the proposed theoretical results.</description><subject>Control methods</subject><subject>Control systems</subject><subject>Cost function</subject><subject>guaranteed cost control</subject><subject>Linear matrix inequalities</subject><subject>Lipschitz nonlinearity</subject><subject>Mathematical analysis</subject><subject>Nonlinear systems</subject><subject>reset control systems</subject><subject>reset law</subject><subject>Upper bounds</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQgIMoWKvgTwh48bJ1kuwrRym-oFgQPcdskm23bJM1SSnrrze1Xr3Mg_mYYT6ErgnMCAC981bNSiiqEzQhwHlGKOOnhzrnWc0pO0cXIWwA0ozmE_S5HGK3lT32JpiIe7nH2oRuZXEjg9HYWbzaSS9tNKlTLsQUbPSux1sT107j1nm86Iag1l38xtbZvrNGehzGEM02XKKzVvbBXP3lKfp4fHifP2eL5dPL_H6RKUarKmu4rJSUikgGpKhLbVjZQFnTNm801DXlqikqxUtQVd0qAK0KXTDTkFwD5TWbopvj3sG7r50JUWzcztt0UtCyICXjhOaJuj1SyrsQvGnF4NP7fhQExMGfSP7EwV9CsyO673oz_suJt9f5L_8DnqNySQ</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>Shahbazzadeh, Majid</creator><creator>Sadati, Seyed Jalil</creator><creator>HosseinNia, S. Hassan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0877-7888</orcidid><orcidid>https://orcid.org/0000-0003-3964-7648</orcidid></search><sort><creationdate>20220525</creationdate><title>Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems</title><author>Shahbazzadeh, Majid ; Sadati, Seyed Jalil ; HosseinNia, S. Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3277-b9a7caac1a301586de36b0682f4bd08829cb57c960c78fc00dc5d53eb14d02983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control methods</topic><topic>Control systems</topic><topic>Cost function</topic><topic>guaranteed cost control</topic><topic>Linear matrix inequalities</topic><topic>Lipschitz nonlinearity</topic><topic>Mathematical analysis</topic><topic>Nonlinear systems</topic><topic>reset control systems</topic><topic>reset law</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahbazzadeh, Majid</creatorcontrib><creatorcontrib>Sadati, Seyed Jalil</creatorcontrib><creatorcontrib>HosseinNia, S. Hassan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahbazzadeh, Majid</au><au>Sadati, Seyed Jalil</au><au>HosseinNia, S. Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2022-05-25</date><risdate>2022</risdate><volume>32</volume><issue>8</issue><spage>4739</spage><epage>4751</epage><pages>4739-4751</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article proposes a systematic approach for optimal reset law design of a class of nonlinear systems. By using the guaranteed cost control method, sufficient conditions for the design of optimal reset law are derived in terms of linear matrix inequalities. In an offline design procedure, the reset law is computed that minimizes the upper bound of a quadratic cost function. The proposed method can be implemented for real‐time applications even with small sampling time. The simulation results verify the efficacy and effectiveness of the proposed theoretical results.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6057</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0877-7888</orcidid><orcidid>https://orcid.org/0000-0003-3964-7648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2022-05, Vol.32 (8), p.4739-4751
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2651639124
source Wiley Online Library All Journals
subjects Control methods
Control systems
Cost function
guaranteed cost control
Linear matrix inequalities
Lipschitz nonlinearity
Mathematical analysis
Nonlinear systems
reset control systems
reset law
Upper bounds
title Optimal reset law design based on guaranteed cost control method for Lipschitz nonlinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20reset%20law%20design%20based%20on%20guaranteed%20cost%20control%20method%20for%20Lipschitz%20nonlinear%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Shahbazzadeh,%20Majid&rft.date=2022-05-25&rft.volume=32&rft.issue=8&rft.spage=4739&rft.epage=4751&rft.pages=4739-4751&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6057&rft_dat=%3Cproquest_cross%3E2651639124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651639124&rft_id=info:pmid/&rfr_iscdi=true