Time Series Based Data Explorer and Stream Analysis for Anomaly Prediction

All over the world, time series-based anomaly prediction plays a vital role in all walks of life such as medical monitoring in hospitals and climate and environment risks. In the present study, a survey on the methods and techniques for time series data mining and proposes is carried, in order to so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2022-04, Vol.2022, p.1-13
Hauptverfasser: Yin, Xiao-Xia, Miao, Yuan, Zhang, Yanchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2022
creator Yin, Xiao-Xia
Miao, Yuan
Zhang, Yanchun
description All over the world, time series-based anomaly prediction plays a vital role in all walks of life such as medical monitoring in hospitals and climate and environment risks. In the present study, a survey on the methods and techniques for time series data mining and proposes is carried, in order to solve a brand-new problem, time series progressive anomaly prediction. In terms of contents, the first part sketches out the methods that have captured most of the interest of researchers, which include an overview of abnormal prediction problems, a summary of main characteristics of anomaly prediction, and an introduction of anomaly prediction methodology in literature. The second part focuses on the future research trends on the phase/staged abnormal prediction of time series, where a novel time series compression method and a corresponding similarity measure will be designed, which can be explored subsequently. Finally, the related challenges to take this trend are mentioned. It is hoped that this paper can provide a profound understanding of anomaly prediction for the time series-based data mining research field.
doi_str_mv 10.1155/2022/5885904
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2651414923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651414923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-daffa24ce737277f9e0a3fe23f3f1c0381833528e9154c28a5bfef420cebcc0a3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqzR8Q8Khr89nNHmtbvygotJ5Dmp1gyu5mTbZo_71bWjx6mnnhYRhehK4puadUyhEjjI2kUrIg4gQNqOQkU-M8P_3bx8U5ukhpQwjhhNEBel35GvASooeEH0yCEs9MZ_D8p61ChIhNU-JlF8HUeNKYapd8wi7EPoS6j_g9Qult50Nzic6cqRJcHecQfTzOV9PnbPH29DKdLDLLCtFlpXHOMGEh5znLc1cAMdwB4447aglXVHEumYKCSmGZMnLtwAlGLKyt7e0Q3RzutjF8bSF1ehO2sf8taTaWVFBRMN6ru4OyMaQUwek2-trEnaZE79vS-7b0sa2e3x74p29K8-3_179fdmi1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651414923</pqid></control><display><type>article</type><title>Time Series Based Data Explorer and Stream Analysis for Anomaly Prediction</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yin, Xiao-Xia ; Miao, Yuan ; Zhang, Yanchun</creator><contributor>Qu, Zhiguo</contributor><creatorcontrib>Yin, Xiao-Xia ; Miao, Yuan ; Zhang, Yanchun ; Qu, Zhiguo</creatorcontrib><description>All over the world, time series-based anomaly prediction plays a vital role in all walks of life such as medical monitoring in hospitals and climate and environment risks. In the present study, a survey on the methods and techniques for time series data mining and proposes is carried, in order to solve a brand-new problem, time series progressive anomaly prediction. In terms of contents, the first part sketches out the methods that have captured most of the interest of researchers, which include an overview of abnormal prediction problems, a summary of main characteristics of anomaly prediction, and an introduction of anomaly prediction methodology in literature. The second part focuses on the future research trends on the phase/staged abnormal prediction of time series, where a novel time series compression method and a corresponding similarity measure will be designed, which can be explored subsequently. Finally, the related challenges to take this trend are mentioned. It is hoped that this paper can provide a profound understanding of anomaly prediction for the time series-based data mining research field.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/5885904</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Aging ; Algorithms ; Classification ; Coronaviruses ; COVID-19 ; Data mining ; Deep learning ; Disease ; Electrocardiography ; Environmental monitoring ; Epidemics ; Machine learning ; Medical research ; Medical supplies ; Methods ; Mortality ; Sketches ; Time series</subject><ispartof>Wireless communications and mobile computing, 2022-04, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Xiao-Xia Yin et al.</rights><rights>Copyright © 2022 Xiao-Xia Yin et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-daffa24ce737277f9e0a3fe23f3f1c0381833528e9154c28a5bfef420cebcc0a3</cites><orcidid>0000-0002-5094-5980 ; 0000-0002-1930-6451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Qu, Zhiguo</contributor><creatorcontrib>Yin, Xiao-Xia</creatorcontrib><creatorcontrib>Miao, Yuan</creatorcontrib><creatorcontrib>Zhang, Yanchun</creatorcontrib><title>Time Series Based Data Explorer and Stream Analysis for Anomaly Prediction</title><title>Wireless communications and mobile computing</title><description>All over the world, time series-based anomaly prediction plays a vital role in all walks of life such as medical monitoring in hospitals and climate and environment risks. In the present study, a survey on the methods and techniques for time series data mining and proposes is carried, in order to solve a brand-new problem, time series progressive anomaly prediction. In terms of contents, the first part sketches out the methods that have captured most of the interest of researchers, which include an overview of abnormal prediction problems, a summary of main characteristics of anomaly prediction, and an introduction of anomaly prediction methodology in literature. The second part focuses on the future research trends on the phase/staged abnormal prediction of time series, where a novel time series compression method and a corresponding similarity measure will be designed, which can be explored subsequently. Finally, the related challenges to take this trend are mentioned. It is hoped that this paper can provide a profound understanding of anomaly prediction for the time series-based data mining research field.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Electrocardiography</subject><subject>Environmental monitoring</subject><subject>Epidemics</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Medical supplies</subject><subject>Methods</subject><subject>Mortality</subject><subject>Sketches</subject><subject>Time series</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90E1LAzEQBuAgCtbqzR8Q8Khr89nNHmtbvygotJ5Dmp1gyu5mTbZo_71bWjx6mnnhYRhehK4puadUyhEjjI2kUrIg4gQNqOQkU-M8P_3bx8U5ukhpQwjhhNEBel35GvASooeEH0yCEs9MZ_D8p61ChIhNU-JlF8HUeNKYapd8wi7EPoS6j_g9Qult50Nzic6cqRJcHecQfTzOV9PnbPH29DKdLDLLCtFlpXHOMGEh5znLc1cAMdwB4447aglXVHEumYKCSmGZMnLtwAlGLKyt7e0Q3RzutjF8bSF1ehO2sf8taTaWVFBRMN6ru4OyMaQUwek2-trEnaZE79vS-7b0sa2e3x74p29K8-3_179fdmi1</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>Yin, Xiao-Xia</creator><creator>Miao, Yuan</creator><creator>Zhang, Yanchun</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5094-5980</orcidid><orcidid>https://orcid.org/0000-0002-1930-6451</orcidid></search><sort><creationdate>20220405</creationdate><title>Time Series Based Data Explorer and Stream Analysis for Anomaly Prediction</title><author>Yin, Xiao-Xia ; Miao, Yuan ; Zhang, Yanchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-daffa24ce737277f9e0a3fe23f3f1c0381833528e9154c28a5bfef420cebcc0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Electrocardiography</topic><topic>Environmental monitoring</topic><topic>Epidemics</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Medical supplies</topic><topic>Methods</topic><topic>Mortality</topic><topic>Sketches</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xiao-Xia</creatorcontrib><creatorcontrib>Miao, Yuan</creatorcontrib><creatorcontrib>Zhang, Yanchun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xiao-Xia</au><au>Miao, Yuan</au><au>Zhang, Yanchun</au><au>Qu, Zhiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Series Based Data Explorer and Stream Analysis for Anomaly Prediction</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-04-05</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>All over the world, time series-based anomaly prediction plays a vital role in all walks of life such as medical monitoring in hospitals and climate and environment risks. In the present study, a survey on the methods and techniques for time series data mining and proposes is carried, in order to solve a brand-new problem, time series progressive anomaly prediction. In terms of contents, the first part sketches out the methods that have captured most of the interest of researchers, which include an overview of abnormal prediction problems, a summary of main characteristics of anomaly prediction, and an introduction of anomaly prediction methodology in literature. The second part focuses on the future research trends on the phase/staged abnormal prediction of time series, where a novel time series compression method and a corresponding similarity measure will be designed, which can be explored subsequently. Finally, the related challenges to take this trend are mentioned. It is hoped that this paper can provide a profound understanding of anomaly prediction for the time series-based data mining research field.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/5885904</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5094-5980</orcidid><orcidid>https://orcid.org/0000-0002-1930-6451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2022-04, Vol.2022, p.1-13
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2651414923
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Aging
Algorithms
Classification
Coronaviruses
COVID-19
Data mining
Deep learning
Disease
Electrocardiography
Environmental monitoring
Epidemics
Machine learning
Medical research
Medical supplies
Methods
Mortality
Sketches
Time series
title Time Series Based Data Explorer and Stream Analysis for Anomaly Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Series%20Based%20Data%20Explorer%20and%20Stream%20Analysis%20for%20Anomaly%20Prediction&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Yin,%20Xiao-Xia&rft.date=2022-04-05&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/5885904&rft_dat=%3Cproquest_cross%3E2651414923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651414923&rft_id=info:pmid/&rfr_iscdi=true