Role of Moringa oleifera on Green Synthesis of Metal/Metal Oxide Nanomaterials
Being an environmentally benign method biosynthesis of nanomaterial paying much more attention to researchers, it has many advantages over other routes, such as one pot, facile synthesis, and cost-effective; synthesized material can have good affinity due to surface modification and hence became a m...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2022, Vol.2022 (1) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Being an environmentally benign method biosynthesis of nanomaterial paying much more attention to researchers, it has many advantages over other routes, such as one pot, facile synthesis, and cost-effective; synthesized material can have good affinity due to surface modification and hence became a most attractive candidate for medicinal and biological applications. Moreover, biosynthesis creates a bridge of interdisciplinary research. Biosynthesis can be done by using bacteria, microbes, plant extracts, etc. In this study, we focus on the synthesis of some metal and metal oxide nanomaterials (M/MO NMs) by using an extract of parts from the Moringa oleifera plant. It is a natural source that can serve as a capping, stabilizing, and reducing/oxidizing agent due to the presence of some of the phytochemical parameters. Moreover, it is a rich source of antioxidants, including quercetin and chlorogenic acids, such as flavonoids, phenolics, astragalin, anthocyanins, cinnamates, and carotenoids, as well as a good source of carotene, iron, potassium, calcium, terpenes, quinines, saponins, alkaloids, proteins, tannins, and vitamin. These components produce smaller particles and give a compelling impact on the activities of M/MO NMs nanoparticles. Here, we discuss nanoparticles such as FeO, CuO, ZnO, NiO, MgO, Ag, and Au. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2022/2147393 |